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Abstract

Using incentives to allocate scarce goods is a core tenet of environmental economics but may
result in unpalatable distributional outcomes. We analyze surcharges enacted during a severe
drought in Southern California within nonlinear rate structures. Using machine learning to
generate counterfactual predictions, we find surcharges lead to limited water conservation
despite steep price increases. “Budget-based” rates counteract conservation goals by shield-
ing large users from high prices and surcharges do little to reduce the regressivity of water
expenditures. Simpler rate structures can dominate along equity dimensions and their pro-
gressivity can be enhanced via lump-sum transfers within the rate structure.
JEL codes: D12, H42, L95, Q25
Key Words: Conservation policy; drought management; nonlinear pricing; water demand

*We thank the California Data Collaborative (CaDC) and the two anonymous member utilities for facilitating
access to the billing data. We are grateful for multiple conversations with Patrick Atwater and Christopher Tull at
CaDC, as well as multiple staff members at the two utilities, who helped us to interpret the data and understand
the context surrounding drought policies enacted during our study period. We thank Fiona Burlig, Bryan Pratt, Saif
Ali, and seminar participants at the 2019 Urban Water Demand Roundtable, Arizona State University, ETH Zurich,
the 2019 AERE Summer Conference, the 2020 Seminar in Water Economics Online (SWELL) Series, the 2022 WEAI
Annual Conference, and the University of Maryland for helpful comments. This work is/was supported by the
USDA National Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04951 and Accession
#7006541. Any remaining errors are our own.

†Wietelman: University of Maryland. Email: dcwietel@umd.edu.
‡Wichman: Georgia Institute of Technology & Resources for the Future. Email: wichman@gatech.edu
§Brent: Pennsylvania State University. Email: dab320@psu.edu.

dcwietel@umd.edu
wichman@gatech.edu
dab320@psu.edu


1 Introduction

Severe droughts linked to climate change threaten water supplies globally. Water scarcity is
particularly acute in the western United States, a region currently experiencing its driest condi-
tions since at least 800 C.E. (Williams et al., 2022). Extended drought periods place tremendous
pressure on urban water districts, especially those without their own surface or groundwater
rights that rely on purchased water deliveries. In the face of shrinking and uncertain supply, wa-
ter managers in arid regions must continue to search for policy instruments to curb residential
water demand.

Economists often advocate for raising the price of water to reflect its scarcity value. How-
ever, multiple factors inhibit water prices from adjusting to real-time supply conditions. First,
economies of scale in piped water provision cause most residential water in the U.S. to be sup-
plied by a single local municipal utility with administratively set water prices.1 Changing prices
often requires a formal ratemaking process and cannot quickly adjust to match real-time supply
fluctuations during drought (Hanemann, 1997). Additionally, the recognition of water access as
a human right (UN General Assembly, 2010) coupled with political pressure means that water
prices often fall below the long-run marginal cost of supply (Timmins, 2002a,b; Renzetti, 1992,
1999). Such systematic under-pricing fails to adequately signal to households the scarcity value
of the water they consume (Olmstead, 2010).2 Even though water is theoretically under-priced,
implementing price increases raises equity concerns. At least 10% of U.S. households currently
grapple with water affordability issues, which have been exacerbated by the COVID-19 pandemic
(Bostic et al., 2021; Cardoso and Wichman, 2022).

Given the tension between sending appropriate scarcity signals and maintaining affordability,
how can residential water rates jointly address conservation and equity objectives during times
of severe drought? We address this question by studying the performance of two drought sur-
charge pricing programs layered within existing rate structures. Our sample covers the 2011–2017
period in California, during which the state experienced some of its driest years in recorded his-
tory (Mount et al., 2023). In 2015, utilities facing unprecedented conservation mandates from the
state adopted a variety of price and non-price policies to induce dramatic decreases in water con-
sumption. The two utilities that we consider implemented temporary surcharge price increases
in 2015 through large inframarginal and marginal price changes within their existing nonlinear
“budget-based” rate structures, or BBRs, that define household-specific consumption tiers. BBRs
are similar to traditional increasing-block rates (IBRs) where the marginal price for consuming
an additional unit of water rises as consumption increases. The key difference between BBRs and

1Nearly 90% of community water systems in the United States are public. Source:
https://efc.web.unc.edu/2016/10/19/public-vs-private-a-national-overview-of-water-systems/. Last accessed:
May 16, 2024.

2Municipal utilities are also generally further constrained by revenue recovery requirements, which limit utilities
to recovering revenues adequate to cover their costs of supplying water. This is especially true in California due to
Proposition 218, which limits the types of fees that local governments (including water utilities) can assess. Wang and
Wolak (2022) investigate how nonlinear prices can be used to reduce system-wide uncertainty in revenue generation.
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their IBR counterparts is the assignment of individualized water budgets to each household that
also vary month-to-month. These individualized budgets directly determine the marginal price
tiers a household faces, as opposed to IBRs where the consumption tiers that define prices are
the same for all households.

Using a panel of monthly bills for over 37,000 households, we estimate a series of demand
models to characterize how households responded to drought surcharges. To isolate the effect of
price increases on water use from a suite of other non-price policies, information campaigns, and
behavioral nudges adopted contemporaneously, we develop an approach to generate counterfac-
tual consumption estimates during the drought surcharge period. We build on the framework
of Burlig et al. (2020) and Prest et al. (2023) by using random forests to generate predictions
for what consumption would have been during the drought surcharge period absent any pol-
icy changes. We then use our counterfactual predictions to construct an instrument for price in
our demand models. This simulated instrument—the difference between the predicted price a
household faces under surcharge pricing and the predicted price a household would have faced
for the same level of consumption prior to surcharge pricing—isolates the exogenous policy-
induced variation in prices needed to estimate causal price elasticities (Ito, 2014; Sears, 2021; Ito
and Zhang, 2023).

Our primary price elasticity estimates range from -0.2 to -1.0 and are largely consistent with
those reported in the broader water demand literature (Espey et al., 1997; Dalhuisen et al., 2003).
This is true even though our setting is relatively rare in that we isolate exogenous variation in
temporary drought surcharges, as opposed to permanent changes in the rate structure. These
results suggest that drought surcharges fail to induce elastic price responses even under severe
drought.3 We conduct a series of simulation exercises where we combine our demand estimates
with the total water conservation observed in our data to identify what proportion of observed
conservation can be attributed directly to the drought surcharges themselves. Under reasonable
assumptions, we find that the surcharges are only able to explain around one-third or less of the
aggregate conservation. This result has important implications for urban water managers, as it
emphasizes the role that both price and non-price policy instruments play in curbing residential
water demand (Olmstead and Stavins, 2009; Wichman et al., 2016; Browne et al., 2021).

We then decompose which consumers bear the burden of drought surcharge pricing. It is
well-established that water bills in general are a regressive means of raising revenue when com-
pared to other public funding mechanisms that directly target wealth such as income or property
taxes (Cardoso and Wichman, 2022). We confirm that the BBRs observed here are regressive by
plotting observed water expenditure shares across income groups, finding that the lowest-income
groups pay the largest proportion of their total income for water. While this regressivity is not
specific to the BBRs observed here, in theory surcharge pricing could result in some redistri-
bution if high-income, high-use households face steep price increases. We investigate this by

3These results are also consistent with evidence from the energy demand literature showing that demand elastici-
ties for electricity remain consistent even in the face of extreme energy price changes (Alberini et al., 2019).
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constructing Lorenz curves of water expenditures and income in a manner inspired by Levinson
and Silva (2022). We find that drought surcharges induce little change in regressivity even under
optimistic assumptions about consumer price-responsiveness. Further investigation reveals that
while surcharges do affect households who exceed their assigned water budget, the assignment
of budgets using factors such as lawn size shields large water users from facing the highest
marginal price tiers. This implies that the BBRs we consider here both weaken the scarcity signal
intended to be sent by surcharge pricing and implicitly transfer some costs to smaller, poorer
homes. We find that BBRs subsidize nonessential water demand by providing more cheap water
to households expected to have large demands for water (like those with large lawns).4

Lastly, we simulate how alternative rate structures under surcharge pricing would affect eq-
uity considerations. Using our counterfactual consumption predictions, we construct household
water bills under several hypothetical rate structures. We find that uniform rate structures per-
form similarly or slightly worse to BBRs in terms of equity, but pairing the uniform rate with
a variable service charge tied to observable measures of income or wealth largely ameliorates
the equity concerns. Additionally, we find that BBRs are more regressive than their IBR coun-
terparts. As a result, it may be preferable for utilities to employ simpler rate structures given
that consumers often misperceive complex nonlinear prices (Ito, 2014; Wichman, 2014; Brent and
Ward, 2019; Shaffer, 2020). Although we conclude that BBRs do not offer equity advantages over
stylized alternatives, water budgets combined with drought surcharges do retain the ability to
transmit household-specific information signals about what the utility considers to be “wasteful"
consumption. An understanding of whether these signals serve as an effective non-price conser-
vation tool is needed to make definitive claims about the ultimate welfare performance of BBRs
relative to hypothetical alternatives.

Our findings contribute to several distinct literatures. First, we introduce new evidence to
the rich economics literature on the demand for residential water (e.g., Howe and Linaweaver Jr,
1967; Espey et al., 1997; Dalhuisen et al., 2003). Modern studies estimate causal price elastic-
ities for water demand using a panel of billing microdata and quasi-experimental variation in
prices (Nataraj and Hanemann, 2011; Wichman, 2014; Wichman et al., 2016; Sears, 2021). Our
study is unique in that we identify responses to temporary surcharge price increases and find
largely inelastic demand, as opposed to the more common case in the literature of permanent
rate changes. This finding is relevant for utilities pursuing adaptive water management that al-
low prices to temporarily reduce consumption during droughts. We also add to the literature
estimating the impact of price and nonprice water conservation policies implemented during the
California drought of 2011-2017. These include nudges like home water reports (Ferraro and
Price, 2013; Brent et al., 2015, 2020; Jessoe et al., 2021; Brent and Wichman, 2022), public sham-
ing and moral suasion (Sears, 2021), fees and other excess water use fines (Sears, 2021; Pratt,

4Given evidence that peer effects associated with the conversion from green to dry landscaping are a key mecha-
nism driving urban water conservation efforts, assigning household water budgets that increase with lawn size could
potentially inhibit further adoption of such landscaping practices by large-lawn, high-income households (Bollinger
et al., 2020).
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2023), and automated irrigation enforcement (West et al., 2021; Browne et al., 2023). Our analy-
sis of conservation effects of price during drought is similar to Browne et al. (2021), who study
price increases in Fresno during the drought. Our study has the advantage of isolating exoge-
nous variation in exposure to price increases to identify causal price responses, and the resulting
distributional effects, while Browne et al. (2021) only present correlations due to limited price
variation. Given that drought conditions are expected to persist under worsening climate condi-
tions, it is crucial to understand which drought policies implemented in California were effective
at inducing conservation. Our study contributes an important analysis of surcharge pricing that
can help inform future policy design.

Second, we contribute to the literature considering the distributional impacts of environmen-
tal policy broadly, and specifically the ability of utility rates to serve as a redistributive policy
instrument to meet equity goals (e.g., Borenstein, 2012; Borenstein and Davis, 2012; Deryugina et
al., 2019; Brolinson, 2020; Burger et al., 2020; Levinson and Silva, 2022). Much of this literature
is focused on prices for electricity or natural gas, with fewer papers studying the redistributive
aspects of water prices despite their acute importance to low-income households. Olmstead and
Stavins (2009) discuss the importance of considering the equity properties of prices as a conserva-
tion instrument as opposed to nonprice policies, noting that neither has a theoretical advantage
over the other in terms of equity. Recent studies have addressed equity more directly, finding
that seasonal rates may induce larger conservation responses in wealthier, higher-use homes and
that individualized rates based on average winter consumption may be regressive under certain
conditions (El-Khattabi et al., 2021; Smith, 2022). Our study is unique in that it unpacks the
distributional implications of nonlinear water rates specifically in the context of surcharge pric-
ing under drought conditions. Our analysis also further complements Burger et al. (2020) and
proposals for more progressive electricity rates such as Borenstein et al. (2021) by illustrating the
desirable equity benefits of allowing fixed charges to vary with household income. Given the
expected persistence of drought conditions combined with rising concerns over water affordabil-
ity, further analysis of the equity implications of water prices is crucial (Mack and Wrase, 2017;
Cardoso and Wichman, 2022; Wichman, 2023).

Third, we contribute to a growing literature on behavioral responses to household-specific
nonlinear water rates that have rapidly increasing penetration in arid regions (Mayer et al., 2008;
Barr and Ash, 2015). While a rich literature exists on nonlinear pricing broadly, relatively few
papers consider budget-based rates specifically. Baerenklau et al. (2014) estimate large reduc-
tions in demand due to the introduction of budget-based rates in a southern California utility.
Other studies also find that budget-based rates can induce conservation, particularly in high-
use households through information signals sent by individualized budgets (Baerenklau and
Pérez-Urdiales, 2019; Pérez-Urdiales and Baerenklau, 2019). Other papers in this literature study
demand responses to individualized water rates that are similar in practice to budget-based rates,
but with tiers defined using other metrics such as average winter consumption or annual cumula-
tive consumption (Smith, 2022; Li and Jeuland, 2023). While our focus is on drought surcharges,

4



our results stand in contrast to the literature on individualized water rates and suggest a more
nuanced view of BBRs. Although BBRs are often hailed as progressive, through our distribu-
tional analysis we highlight potential equity concerns associated with the implicit subsidies that
BBRs grant to households with larger outdoor lawns.

Finally, we contribute to the literature combining machine learning methods with traditional
program evaluation tools (Mullainathan and Spiess, 2017; Athey and Imbens, 2019). Within
economics, predicting missing counterfactuals is a particularly useful application of machine
learning, and various predictive methods have been shown to work well in the context of energy
and water demand (Burlig et al., 2020; Athey et al., 2021; Prest et al., 2023). We demonstrate how
out-of-sample predictions from machine learning models can be used to define an exogenous
instrument in an instrumental variables framework, which is then used to estimate causal price
elasticities. Given the growing evidence that machine learning tools can replicate benchmark
treatment effects from randomized experiments (Prest et al., 2023), approaches like ours will
become increasingly more common given the costly and difficult nature of successfully designing
and implementing randomized experiments within these settings.

2 Background: Water Rates Under Drought of 2011-2017

California is notorious for its highly variable climate, with both wetter-than-average and drier-
than-average years occurring regularly (Mount et al., 2021). California entered into an extended
period of drier-than-average conditions in the latter half of 2011, and by mid-2012 large swaths
of the state were experiencing at least ”moderate drought” (NOAA, 2023). In response to the
extended drought conditions, Governor Brown declared a state of emergency on January 17,
2014. The order directed state resources towards water conservation campaigns and called on
Californians to reduce water consumption by 20%.

With drought conditions persisting and water scarcity concerns growing increasingly more
severe, on April 1, 2015 Governor Brown issued a second executive order that took the unprece-
dented step of ordering mandatory statewide water cuts from urban water suppliers. Specifically,
the order directed the State Water Resources Control Board to impose restrictions that would
achieve a 25% reduction in statewide urban water consumption relative to 2013 levels. The order
also established a permanent water consumption and conservation reporting requirement for ur-
ban water suppliers. These mandatory urban water cuts spurred urban utilities to adopt a variety
of price and non-price policy interventions, and were in effect for a year until their withdrawal
in May 2016.

California entered into an especially wet period in water year 2017 (starting in October 2016).
Specifically, January and February 2017 were the wettest months on record for some parts of
the state, including the northern Sierra Nevada mountain range and the San Joaquin River basin
(NOAA, 2017). These unusually high precipitation levels (including snowfall) helped replenish
surface water levels at critical reservoirs, while at the same time inflicting significant economic
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damage due to flooding. The increased precipitation levels, combined with evidence that urban
water suppliers were succeeding to some degree at inducing conservation, caused the lifting of
the drought state of emergency on April 7, 2017.5

2.1 Nonlinear Rate Structures

We study the nonlinear rate structures of two water utilities in southern California, both of
which provide drinking water and sewer services to dedicated residential service areas. Both
utilities are heavily dependent on imported water sourced from the Sacramento-San Joaquin Bay-
Delta (through the State Water Project) and the Colorado River (by way of the Colorado River
Aqueduct), though one utility does hold limited groundwater rights. The first utility serves an
area closer to the Pacific Coast with a relatively denser population, smaller lot sizes on average
and a relatively cooler climate. The second utility serves an area that is further inland with a
relatively less-dense population, larger lot sizes and a relatively warmer climate. Hence, we refer
hereafter to the first utility as the Coastal Utility and the second utility as the Inland Utility. As
part of a data-sharing agreement, we refrain from publicly identifying the two utilities here.

Both utilities price water through a BBR. BBRs are similar to traditional IBRs in that the
marginal price for consuming an additional unit of water rises as households consume higher
quantities. The key difference between BBRs and their IBR counterparts is the assignment of
individualized water budgets to each household that also vary month-to-month. These individ-
ualized budgets directly determine the marginal price tier a household faces, as opposed to IBRs
where the consumption tiers that define prices are common to all households. For example, in
a simple IBR with a low and high price all households will pay the high price for units above
the common threshold k. In a BBR, each household i has their own threshold, ki, that depends
on household and weather characteristics and is determined by a water budget formula. Both
utilities use roughly similar water budget formulas that define a two-part budget consisting of in-
door and outdoor components. Together, the indoor and outdoor budgets define what the utility
views as acceptable or non-“wasteful” water consumption for a household in a given month.

Equation 1 outlines the calculation of household i’s indoor water budget in billing period t:

Indoorit = Personsi × GPCDt × Daysit × (1/748) (1)

In Equation 1, Persons is the household size, GPCD is an allotment made by the utility for water
usage in gallons per capita per day, Days is the number of days in the billing cycle, and (1/748)
is a scaling factor to convert from gallons of water to hundred cubic feet (1 CCF = 748 gallons).
Coastal Utility assumes a household size of four for single-family residential homes and three

5Figure A.1 lays out a visual timeline of the events discussed in this section. More information on both the 2014 and
2015 executive orders can be found at https://www.ca.gov/archive/gov39/2014/01/17/news18368/index.html and
https://www.ca.gov/archive/gov39/2015/04/01/news18913/index.html, respectively. Information on the 2017 lift-
ing of the state of emergency can be found at: https://www.ca.gov/archive/gov39/2017/04/07/news19748/index.
html. Last accessed: January 15, 2024.
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for condominiums, while Inland Utility assumes a household size of three for all residential
customers.6 Coastal allotted 65 GPCD through April 2015, and then 60 GPCD through the end
of our study period. Inland used a value of 60 GPCD throughout the study period.

Equation 2 outlines the calculation of household i’s outdoor water budget in billing period t:

Outdoorit = Areai × ETit × PFit × (0.62/748) (2)

In Equation 2, Area is the amount of irrigable area on the customer’s property in square feet, ET
is a measure of monthly evapotranspiration in inches, PF (Plant Factor) is a constant assumed by
the utility about the types of vegetation present on a given property and the subsequent amount
of water required, and (0.62/748) is a scaling factor to convert from inches to gallons/square
foot, and then to CCF. Households can also request to update the amount of irrigable square
footage used to calculate their outdoor budget. Coastal assigns a constant value for plant factor
across households and months (0.8 before April 2015 and 0.7 after), while Inland assigns varying
plant factors depending on the month and service start date. A household’s total water budget
is determined by summing the indoor and outdoor water budgets (i.e., Budgetit = Indoorit +

Outdoorit). In practice, household size and irrigable area drive between-household variation in
water budgets, while evapotranspiration drives both between-household variation in budgets
(across the spatial landscape) as well as within-household variation (over the course of the year).

2.2 Implementing Drought Surcharges within Nonlinear Rates

Figure 1 displays visually the nominal nonlinear prices and consumption tiers over time under
each utility’s BBR structure. Water use within the customer’s indoor budget is charged at the
lowest marginal prices. Consumption above the indoor water budget but still below the total
budget is charged at the Tier 2 price, representing outdoor consumption. Any consumption
above this is considered “over budget” and is charged at the relatively higher tier prices. 125%
and 150% of total budget are the relevant thresholds between Tiers 3 and 4 consumption and
Tiers 4 and 5 consumption, respectively. Coastal uses five price tiers and kept rates constant
through April 2015, when it lowered the marginal price in its highest tiers. Inland implemented
several small increases over time. Inland also only used four price tiers for its first year of BBR
implementation, adding a fifth tier in October 2012. Coastal has a higher peak-to-minimum
marginal price ratio than Inland, with the highest marginal price being more than four to five
times greater than the lowest marginal prices over the course of the study period.

Figure 1 also illustrates how the two utilities responded to worsening drought conditions
without changing the underlying rate structure. Following the April 2015 executive order man-
dating 25% water cuts statewide, both Coastal and Inland entered into elevated stages of their
water shortage contingency plans (WSCP). A crucial aspect of each utility’s drought response

6It is the responsibility of the household to contact the utility to update household size, and verification is handled
on a case-by-case basis. In Appendix D we demonstrate how these household size assumptions end up over-allocating
water to many households by overestimating the number of persons in the home.
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Figure 1: Rate Structures Over Time

Notes: The figure presents the nonlinear budget-based rate structures in place for each utility over the course of the study period
that we observe. Marginal prices are given in nominal U.S. dollars/centum cubic feet ($/CCF). The solid red vertical bars represent
the period during which each utility’s drought surcharges were in effect, invoked under their water shortage contingency plans.

strategy under their WSCP was the imposition of drought surcharges on over-budget water users.
Both utilities implemented such drought surcharges from the summer of 2015 until February
2017. Under their WSCP, Coastal suspended the Tier 3 and 4 prices, and assessed a $7.43/CCF
charge on all consumption over a household’s water budget, the difference between the Tier 2
and Tier 5 price. For the first year under their WSCP, Inland similarly suspended Tier 3 and Tier 4
rates. Inland also reduced outdoor water budgets by 30% during this time. From June 2016 until
the surcharges were lifted in February 2017, Inland restored outdoor water budgets and the Tier
3 price, and charged all consumption over 125% of budget at the Tier 5 level. Drought surcharges
are represented in Figure 1 by removing the intermediate tier prices when the WSCP was in
effect, denoted by the red vertical bars. In practice, moving from 100% to 101% of a household’s
budget during the WSCP results in dramatic increase in marginal prices.

Throughout the paper, we refer to the price changes observed here as drought surcharges, as
opposed to the more traditional idea of conservation prices. Under conservation pricing, rates
are designed to permanently recover the lost revenue that results from selling less water over
the long-run. Drought surcharges are designed to be temporary in nature and are not intended
to raise revenues through the highest tiers, only to cover the costs associated with purchasing
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higher-cost water supplies under drought. The drought surcharges implemented here sought
to communicate scarcity through the household budget and discourage excessive and poten-
tially wasteful consumption by having households face the highest tier prices immediately after
going over-budget, while still preserving low marginal prices for under-budget consumption.
Both utilities underwent extensive campaigns to warn households about the impending drought
surcharges and to encourage within-budget consumption. The surcharges were carefully im-
plemented in accordance with Proposition 218 restrictions that impact how utilities can price
water under nonlinear rate structures.7 In both utilities, any excess revenues generated above the
marginal cost of water supply were directly recycled back into water efficiency programs.

3 Data

We make use of four primary data sources in our analysis: household-level monthly billing data,
demographic information from the U.S. Census Bureau, property value and tax information from
county assessor offices, and local weather data. We obtain our monthly water billing records from
the California Data Collaborative (CaDC), a data nonprofit focused on water issues in California.
For both utilities, we restrict the data to include only single-family residential customers for
which we have a full or nearly-full panel (≥ 70 months) of billing records since the time when
BBRs went into effect (July 2011 for Coastal, October 2011 for Inland). After further cleaning
and imposition of filters such as dropping extreme outliers, we are left with 1,989,521 customer-
month observations for Coastal (27,006 unique households) and 789,741 observations for Inland
(10,181 unique households). A complete description of the data cleaning steps is provided in
Appendix B. We merge prices to these data using publicly available rate information.

We supplement our billing microdata with data from three additional sources. First, we
obtained demographic information on the distribution of household size, race and income dis-
tributions at the census block group level from the U.S. Census Bureau’s American Community
Survey (ACS) 2015 5-year estimates (U.S. Census Bureau, 2015). We match households to census
block groups using the block group information provided in the billing records. Second, we ob-
tain assessor data for the two California counties in which the utilities are located. These records
include the property values (land and improvement value) and other property characteristics
such as the total area of the lot, the number of bedrooms and bathrooms of the structure, and
detailed property use code descriptions.

Finally, we obtain data on local weather beyond evapotranspiration (which was included in
the billing data for the purpose of calculating water budgets). We use high-resolution weather
data from the Parameter-elevation Relationships on Independent Slopes model (PRISM) and
the panel of daily weather observations across our entire study period used in Schlenker and

7At least one municipal utility has been forced to alter its nonlinear rate structure in response to Proposition 218
concerns. See Capistrano Taxpayers Association, Inc. v. City of San Juan Capistrano, 236 Cal.App.4th 1123 (Cal. Ct. App.
2015). The case held that nonlinear water rates did not inherently violate Proposition 218, but that tier definitions
must be informed by the actual cost of supplying water service in each tier.
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Roberts (2009) to construct average minimum and maximum temperature, as well as average
and total precipitation over the course of the billing period for each customer-month. We match
our households to the 2.5-by-2.5-mile grids using household latitude and longitude provided in
the billing records. We also use data from the California Irrigation Management Information
System (CIMIS) for some records in Inland where evapotranspiration and/or outdoor water
budget amounts were missing (CIMIS, 2018).

Table 1: Summary Statistics

Coastal Mean Std. Dev.
Water Consumption (CCF) 12.77 9.85
Indoor Water Budget (CCF) 10.11 2.07
Outdoor Water Budget (CCF) 7.29 8.09
Monthly Water Budget (CCF) 17.40 8.88
Household Size 3.96 0.73
Gallons per capita per day 63.05 2.44
Days in billing period 30.46 2.80
Irrigable Square Feet 2,717.04 2,745.27
Evapotranspiration (inches) 4.16 1.33
No. of bedrooms 2.53 1.59
Property Value (1000 USD) 485.37 329.02
Unique Accounts 27,006
Total Billing Observations 1,989,521

Inland Mean Std. Dev.
Water Consumption (CCF) 24.57 20.83
Indoor Water Budget (CCF) 9.40 3.61
Outdoor Water Budget (CCF) 30.51 37.49
Monthly Water Budget (CCF) 39.91 37.88
Household Size 4.07 1.41
Gallons per capita per day 60.00 0.00
Days in billing period 30.39 3.58
Irrigable Square Feet 8,810.87 8,834.65
Evapotranspiration (inches) 5.25 1.92
No. of bedrooms 3.91 0.79
Property Value (1000 USD) 388.19 144.85
Unique Accounts 10,841
Total Billing Observations 789,741

Notes: The table presents billing-record level summary statistics for each utility separately. Summary statistics are presented for the
full period of billing records available: July 2011–August 2017 for Coastal and October 2011–December 2017 for Inland.

We present in Table 1 billing-record level summary statistics of key variables related to con-
sumption, budgets, and property characteristics for the households in our data. Households in
Inland tend to be larger homes, both in terms of actual dwelling size (e.g. number of bedrooms)
and in terms of lot size (e.g. irrigable square footage). Households in Inland have roughly triple
the amount of irrigable square footage of homes than in Coastal (on average). Recall that irriga-
ble square footage is a direct component of the water budget calculation formula, and thus leads
to higher average outdoor and total budgets in Inland. Average monthly water consumption for
households in Inland is nearly double that of Coastal, which is also likely driven by the need
for more outdoor water consumption due to larger lawns. Inland also experiences significantly
greater evapotranspiration than Coastal, further driving larger water consumption needs. Finally,
the Coastal service area is wealthier, as indicated by higher average property values.

4 Empirical Framework

We first estimate causal price elasticities induced by the drought surcharges adopted within non-
linear BBRs. There are two primary challenges to identifying casual effects. First, utilities often
implement many non-price water conversation programs during droughts at the same time as
price changes. During the California drought of 2011-2017, the state and local utilities experi-
mented with a suite of policies to curb demand. These include the mandatory water restrictions
ordered by the governor, public information campaigns, rebates for installing turfgrass, water
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audits, etc. Simply observing changes in water consumption before and after implementation
of drought surcharges cannot identify how much of any observed water conservation can be
attributed to prices alone.

The second econometric challenge is the well-known issue of simultaneity between prices
and quantity that arises under nonlinear rates (Olmstead et al., 2007; Olmstead, 2009; Wichman
et al., 2016). With BBRs (as well as traditional IBRs), the marginal and average price faced by the
household by definition changes as a function of consumption. Failing to account for this source
of endogeneity will result in ordinary least squares (OLS) demand estimates that are biased and
potentially upward-sloping, since marginal and average prices rise with consumption.

We design a novel identification strategy that solves both of these econometric issues by ex-
ploiting exogenous, policy-induced changes in marginal and inframarginal prices to identify the
causal effect of surcharge pricing on demand. First, we train machine learning models using data
prior to the declared drought emergency to generate counterfactual out-of-sample consumption
predictions for each household during the drought surcharge period. These counterfactual con-
sumption schedules represent what household consumption would have been absent the many
changes in price and non-price policies implemented during the drought emergency. We then
use the counterfactuals to define a predicted price change that captures exogenous changes in
relative exposure to drought surcharges. We use the predicted price change as an instrumen-
tal variable in a two-stage least squares (2SLS) demand framework to instrument for the actual
marginal or average price. We first outline the procedure used to generate our counterfactual
predictions. We then elucidate the construction of and intuition behind our instrument, and
conclude with a discussion of our primary estimating equation.

4.1 Counterfactual Demand Predictions

We begin our analysis by using machine learning to generate counterfactual predictions for
monthly household-level water consumption. Specifically, we use random forests to train models
of household water consumption using data collected before the drought emergency was de-
clared (Breiman, 2001). We use random forests to generate predictions in part because of their
ability to capture highly complex interactions and nonlinear relationships between candidate
predictor variables (Hastie et al., 2009). In Table A.1, we provide evidence that using random
forests indeed does buy us additional predictive accuracy in the pre-drought surcharge pricing
period over simpler OLS predictions.8 Previous literature has also shown that random forests
perform well in predictive settings where the goal is ultimately to recover causal estimates of
policy impacts on demand for utility services like electricity (Prest et al., 2023).

Our training period is all months prior to January 2014, when the first drought emergency
was declared. While drought conditions had already started to worsen and some drought-related

8In Appendix C, we provide results from a series of diagnostic exercises to ensure the reliability of our generated
counterfactual predictions. These include comparing model errors (Figure A.2 and Table A.1), tuning several key
random forest model parameters (Figure A.3), examining variable importance plots for our final predictions (Figure
A.4), and generating predictions under alternative approaches (Figure A.5).
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policy changes like conservation messaging were already under way during this time, we are lim-
ited by our lack of data prior to 2011 for either utility. By limiting our training period to data
from 2011-2013, our predictions reflect baseline water consumption under drought but before
anticipatory consumption effects related to intensive drought emergency policies began. Our
approach mirrors that of Burlig et al. (2020) and Prest et al. (2023) in that we make out-of-sample
predictions for years outside of the training sample in order to represent what an accurate coun-
terfactual without any policy change would look like. We train the algorithm using a number
of candidate predictor variables, including weather data, household and property characteristics,
water budgets, demographic data at the census block-group level, month-of-sample dummies,
and zip-code dummies. We implement the algorithm by generating 500 trees separately for each
utility. We then use the resulting outputted ensemble of trees to generate out-of-sample predic-
tions from 2014 onwards. We are particularly interested in the out-of-sample predictions from
July 2015 to February 2017, when drought surcharges were in place for both the Coastal and
Inland utilities.

We demonstrate our approach visually in Figure 2. The figure shows the time series for both
average predicted (q̂it) and actual consumption (qit) separately for each utility. We partition the
figures into three discrete time periods: the pre-drought months used to train the random forest
algorithms (“Training Period,” mid-2011 to December 2013); the period in which the drought
emergency had been declared but drought surcharges were not yet in effect (“Drought Emer-
gency,” January 2014 to June 2015); and the period in which drought surcharges were in effect
(“Drought Surcharge,” July 2015 to February 2017). As expected, during the training period the
predictions perform quite well on average. After the training period, qit falls below q̂it in the
aggregate, which remains at a similar level to that of the training period.

The gap in Figure 2 between q̂it and qit that emerges in 2014 represents aggregate water con-
servation during the drought. This difference arises because the predictions, while adjusting for
contemporaneous weather conditions, do not incorporate any drought-related policies enacted in
2014 and beyond. The difference can be attributed to the full suite of drought policies, including
the drought surcharges. The fact that conservation occurs in the drought emergency period be-
fore price changes were implemented demonstrates that non-price conservation is present in our
setting, and highlights the importance of isolating the role of prices from other drought policies.

4.2 Construction of Price Instrument

We next turn to addressing the endogeneity of prices and quantity, which arises in this setting
due to the simultaneous determination of quantities and prices under nonlinear rates. With BBRs,
the marginal price faced by a household rises with quantity consumed relative to the budget.
One solution is to use a structural discrete-continuous choice framework in which a household
first makes the discrete choice of which consumption block to consume in (i.e., 100-125% of
budget), and conditional on that choice, a second continuous choice of how much water to
consume (Hanemann, 1984; Hewitt and Hanemann, 1995; Olmstead, 2009). This solution relies on

12



Training Period Drought Emergency Drought Surcharge

0

5

10

15

20

25

W
at

er
 C

on
su

m
p=

on
 (C

CF
/m

on
th

)

2012 2013 2014 2015 2016 2017

Predicted

Actual

(a) Coastal

0

10

20

30

40

50

W
at

er
 C

on
su

m
p4

on
 (C

CF
/m

on
th

)

2012 2013 2014 2015 2016 2017

(b) Inland

Figure 2: Predicted and Actual Consumption Over Time

Notes: The figure presents the time series of average actual and predicted consumption in each month-of-sample for each utility
separately. The training period data used to train the random forest algorithm up to December 2013 is unshaded. The period in
which the drought emergency had been declared but drought surcharges were not yet in effect is shaded in pink (January 2014 to
June 2015). The period in which drought surcharges were in effect is shaded in red (July 2015–February 2017). Actual consumption
(blue solid line) falling below predicted consumption (navy dashed line) indicates water conservation in the aggregate.
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untenable information assumptions in the context of BBRs, as households do not know what their
exact budget will be until the end of the billing period, when evapotranspiration over the billing
period has been fully observed and budgets can be calculated (but consumption can no longer be
altered). Therefore, households cannot ex ante make the discrete choice of what block to consume
in. A separate reduced-form approach to demand estimation common in the prior literature uses
the full schedule of marginal prices set by the utility as an instrument for marginal price in a
2SLS framework (Olmstead, 2009; Wichman et al., 2016). This solution, although exogenous to
contemporaneous consumption, can be criticized for violating the exclusion restriction.

We address the simultaneity of price and quantity by exploiting predetermined differential
exposure to the exogenous change in price due to drought surcharges. First, we use q̂it and water
budget formulas to generate predicted prices during the drought surcharge period. Specifically,
we calculate the price the household would have faced under surcharge pricing based on the
household’s historical consumption patterns and prevailing weather conditions. This predicted
price (p̂it) is defined by predicted consumption relative to the budget and serves as the first
input into our instrument. Next, we again take q̂it for each household-month during the drought
surcharge period, but this time calculate the price the household would have paid for that level of
predicted consumption before the drought emergency was declared (p̂pre

it ). This second predicted
price represents a baseline price that households regularly faced before the drought emergency
was declared.

Our final instrument is the difference of these two predicted prices: ∆ p̂it = p̂it − p̂pre
it . Taking

the difference of these two predicted prices isolates the exogenous variation in prices that is in-
duced specifically by the policy change in rate structure. For example, households who regularly
consume well under their budget faced little to no price change as a result of the imposition of
drought surcharges, while households who regularly consumed in the higher consumption tiers
before the drought faced large changes in inframarginal and marginal prices when surcharge
pricing was implemented. The instrument is similar in spirit to other “simulated” instruments
regularly used in the water and electricity demand literature (e.g., Ito, 2014; Sears, 2021), and
also has the spirit of a Bartik-type shift-share instrument in that it seeks to capture differential
exposure to a common price shock (Bartik, 1991; Goldsmith-Pinkham et al., 2020).

The validity of our instrument rests on several standard assumptions. The exclusion restric-
tion is that ∆ p̂it has no effect on water demand except through the channel of actual prices faced.
Our historical predictions reflect pre-determined patterns of consumption that are uncorrelated
with the exogenous introduction of drought surcharges. Additionally, the predicted price differ-
ence does not depend on the response to non-price conservation or idiosyncratic demand shocks,
as all predictions were generated using training data that pre-dated drought surcharges.

Figure 3 displays a visual representation of our instrument, defined using average prices.
The figure presents a binscatter that plots the mean of the two components of our instrument, p̂it

and p̂pre
it across the distribution of predicted consumption relative to budget in two percentage

point bins. The figure shows that the gap between these two measures (our instrument ∆ p̂it)
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Figure 3: Relationship between Instrument and Actual Prices

Notes: The figure presents a binscatter that illustrates the relationship between the two components of our instrument and actual
prices faced. Actual average prices faced by household-months are plotted over the distribution of predicted consumption relative to
budget in a series of two percentage point bins with navy circles. Predicted prices under drought surcharge pricing are represented
by blue triangles, and predicted prices using pre-drought surcharge period prices are represented by light blue squares. The
difference between these two predicted price measures is our instrument, and is correlated with actual price faced. The red vertical
lines represent the BBR tier thresholds.
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is on average quite small whenever we predict that a customer will consume under the budget.
This makes intuitive sense as prices do not rise by much for these households. ∆ p̂it grows
larger with predicted consumption relative to budget, indicating households with higher baseline
consumption levels faced relatively higher exposure to drought surcharges due to their pre-
existing consumption patterns. Actual average prices faced by the household-month observations
in each bin are also plotted, which rise along ∆ p̂it. The figure simultaneously demonstrates that
the monotonicity assumption (values for ∆ p̂it are larger for those with larger consumption) and
the first-stage assumption (∆ p̂it is strongly correlated with actual prices faced) hold in our setting.

4.3 Demand Estimation

We use our predicted price changes ∆ p̂it as an instrument in a reduced-form demand framework
to estimate causal price elasticities for drought surcharges. Our demand function takes the form:

∆qit = βpit + δWit + αi + τt + εit (3)

where i indexes households and t indexes billing periods (or months). ∆qit is our dependent
variable and represents the difference between actual consumption (qit) and the household’s
month-specific baseline level of consumption from 2011-2013, before the drought emergency (q̃it):
∆qit = qit − q̃it.9 This difference captures the total effect of drought surcharge pricing and other
non-price drought policies on consumption within a household. Price (pit) is our endogenous
explanatory variable that we instrument for with ∆ p̂it in the first stage of the 2SLS framework.
We estimate models using both average and marginal prices given the debate around what price
households respond to under nonlinear rates (Nataraj and Hanemann, 2011; Ito, 2014; Wichman,
2014; Brent and Ward, 2019; Shaffer, 2020; Cook and Brent, 2021). We assume, loosely, that
average price responsiveness is driven by a form of rational inattention in which households
would optimize according to marginal price levels but the information costs of doing so are
prohibitive (e.g., Sallee, 2014; Wichman, 2017).

We also control for Wit, a vector of contemporaneous weather variables including evapotran-
spiration, precipitation, and temperature (as well as their squares). As is standard in reduced-
form models of demand in panel data settings, we include both household (αi) and billing period
(τt) fixed effects. We calculate standard errors in two primary ways: first by clustering at the
household level, and second through the use of a bootstrapping procedure developed to account
for errors associated with our counterfactual predictions.10 The time period included is from
July 2015 to December 2016, when the drought surcharges were in effect. We drop January and
February 2017 from our primary results due to the heavy-levels of precipitation in these months,

9In particular, the baseline measure q̃it is defined as a household’s month-of-year specific average over the years
2011-2013. For example, to construct ∆qit for a household in August 2015, that household’s consumption for the
months August 2011, 2012, and 2013 is averaged together (q̃it) and subtracted from actual consumption by that
household in August 2015 (qit).

10Our standard errors are complicated by the fact that our counterfactual predictions are measured with error. We
provide a full exposition of our bootstrapping procedure in Appendix C.
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which can cause issues with our out-of-sample predictions. The parameter of interest in Equa-
tion 3 is β, which explains how much of the overall reduction in demand captured by ∆qit can
be attributed to drought surcharges. We then combine our β̂ estimates with observed price and
consumption levels to back out implied price elasticity estimates.

5 Results

5.1 Price Elasticity Estimates

We implement the framework outlined in Section 4 to identify the causal effect of drought sur-
charges on water demand under BBRs. Before estimating our demand regressions, we first check
for visual evidence of “bunching” in the consumption distribution to understand if households
are responding to nonlinear prices by strategically consuming at kink points in the marginal
price schedule (Saez, 2010; Kleven, 2016). We must check for bunching along the distribution
of consumption relative to budget as opposed to consumption alone (which is standard) due to
the nature of BBRs.11 Figure A.6 presents histograms of these distributions during the drought
surcharge period for the two utilities. There is no clear visual evidence of bunching at any of the
kink points in the BBR schedule, which implies that average price or some other expected price
measure may be the more salient price that households respond to (Ito, 2014).

We present the base results from estimating Equation 3 in Table 2. The dependent variable
is ∆qit, so the coefficients on prices can be interpreted as a change in CCF for a dollar change
in the price.12 Columns (1)-(2) present demand regressions using average volumetric price (AP)
and marginal price (MP) for Coastal, and columns (3)-(4) present corresponding regressions
for Inland. We report the Kleibergen-Paap rk Wald first-stage F-statistic for each specification,
which are relatively large and consistent with the intuition from Figure 3 that we have a strong
first-stage (Kleibergen and Paap, 2006). Intuitively, all of the price variables generate negative
effects on consumption. Bootstrapped standard errors are presented below coefficient estimates
in brackets. All price coefficients are estimated with a high degree of precision.13

For each specification in Table 2, we present causal point-elasticity estimates and bootstrapped
standard errors. These elasticity estimates are backed out using the relevant price coefficient in
each specification along with average drought surcharge period consumption and prices. Our
primary elasticity estimates range from -1.03 (unit elastic) to -0.22 (inelastic), and are in the gen-

11For example, 10 CCF may be above budget for some households and below budget for others. Theoretically then,
there is no reason why bunching should occur at any single point in the consumption distribution. However, it is
plausible to believe that households could bunch at the kink points of the nonlinear BBR schedule (100%, 125% and
150% of budget).

12We estimate all specifications separately for each utility using the “ivreghdfe” package in Stata (Correia, 2018).
13Table A.2 presents the same results with the original standard errors clustered by household. Our bootstrapped

standard errors in Table 2 are roughly 30-50% largely than the standard errors clustered at the household level.
However, the coefficients are estimated with enough precision that statistical significance under standard levels is
unaffected. This result, combined with the computational time constraints associated bootstrapping, means that we
move forward with presenting clustered standard errors in other results reported in this paper.
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Table 2: IV Demand Regressions

Coastal Inland

(1) (2) (3) (4)
AP MP AP MP

Average Price -6.49∗∗∗ -5.57∗∗∗

[0.52] [2.01]

Marginal Price -1.83∗∗∗ -1.58∗∗∗

[0.13] [0.56]
ε -1.03∗∗∗ -0.45∗∗∗ -0.61∗∗∗ -0.22∗∗∗

[0.08] [0.03] [0.22] [0.08]
Observations 477,326 480,394 203,259 203,773
Households 26,995 27,006 10,840 10,841
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 1,070 1,349 608 975

Notes: The table presents estimates of β̂ from estimating Equation 3.
The dependent variable is the difference between contemporaneous and
baseline consumption, ∆qit. Endogenous prices are instrumented for in
the first-stage using ∆ p̂it. The time period included is from July 2015 to
December 2016. Columns 1 and 3 instrument for average price, while
Columns 2 and 4 instrument for marginal price. All specifications in-
clude a vector of weather covariates including evapotranspiration, pre-
cipitation, temperature, and their squares. Bootstrapped standard er-
rors calculated according to the procedure outlined in Appendix C are
presented below coefficient estimates in brackets. ***: p-val < 0.01; **
p-val < 0.05; *: p-val < 0.1.

eral range of the short-run demand elasticities estimated in the recent literature (Dalhuisen et al.,
2003; Olmstead, 2010; Sears, 2021). This result is notable because most studies estimate demand
elasticities for permanent changes in prices. However, in our setting much of the variation in prices
is due to temporary drought surcharges. Households were also well-aware that the drought sur-
charges were imposed in response to severe drought conditions and not intended to remain in
place in the long-run. Therefore, it is unlikely that households would have made changes to their
water-using capital stock due to temporary price increases.14 Consistent with other recent analy-
ses, we also find more elastic demand with respect to the average price compared to the marginal
price, with elasticity magnitudes more than double that of marginal price across specifications
(Ito, 2014; Wichman, 2014; Browne et al., 2021).

We subject our primary elasticity estimates to a battery of robustness checks. First, in Ta-
ble A.3 we alter the form of τt to control for fixed effects at the month-of-sample by zip-code
level. In Table A.4, we make an alternative assumption that households respond to one-period
lagged average or marginal price as this is the price on the immediately previous bill received.
Finally, in Table A.5 we estimate a standard log-log demand equation in which the coefficients
themselves can be directly interpreted as elasticities. Across these robustness checks, we largely

14It is possible that customers might make changes to their capital stock (like turfgrass installation, dishwashers, or
washing machines) due to nonprice policies like rebates or social pressures. However, those effects are not driven by
exogenous changes in inframarginal prices, which we exploit through our IV approach.
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estimate similar elasticities to those reported in our primary specifications from Table 2. Across
specifications, we continue to note that demand is relatively more elastic with average price than
with marginal price. In most robustness specifications (8 out of 12), we estimate inelastic water
demand, two estimates are close to unit elastic, and two estimates indicate price-elastic demand.

5.2 Characterizing the Impact of Prices on Aggregate Conservation

Given our causal price elasticity estimates, we next ask: how much of the water conservation
that we observe is directly attributable to the drought surcharges themselves? We answer this
question through a bounding exercise that allows us to characterize the upper and lower bounds
of conservation directly attributed to prices. One critique of BBRs is that the assignment of
individualized water budgets shields households from facing higher prices even if they have
quite large baseline water use (due to larger budgets for households with larger lawns and in
drier months). Therefore, even though the drought surcharge elasticities that we estimate are
similar to the extant literature, it is important for us to accurately characterize the price changes
that households were actually exposed to under the drought surcharge pricing regimes.

Since both average and marginal price are endogenous in our setting, we must make assump-
tions about the actual price changes that households faced under drought surcharges in order to
complete our bounding exercise. First, we assume that actual prices (AP, MP) are representa-
tive of the price change. This assumption likely underestimates the actual price change because
households can decrease consumption due to higher prices, which in turn dampens the real-
ized change in price. For example, a household facing the more than $9/CCF marginal price in
Coastal may reduce consumption to under the budget and see a much lower realized marginal
price, which would underestimate the true price change they responded to. The second assump-
tion we make in our bounding exercise is that predicted prices (ÂP, M̂P) are representative of the
price change that households faced. This assumption likely overestimates the total price change
households faced because the predictions do not account for non-price conservation.

Table A.6 presents a series of summary regressions that help to characterize these changes in
prices faced by households under drought surcharge pricing. In each specification, we regress
the relevant price measure (AP, ÂP, MP, or M̂P) against a dummy indicator for the drought
surcharge period (as compared to the baseline training period of 2011-2013). While prices are still
endogenous, these regressions operationalize the bounding assumptions described previously
by capturing the change in the relevant price measure from the training period to the drought
surcharge period. The “true” change in marginal price ranges from $0.41–$1.11 for Coastal and
$0.08–$1.11 for Inland, while the “true” change in average prices faced is between $0.12–$0.13 for
Coastal and $0.04–$0.33 for Inland.15

15We also consider changes in total bills in Table A.6. Interestingly, in both utilities total bills decrease under
drought surcharges. While some of this decrease is surely attributable to the surcharges themselves, a substantial part
is also likely due to non-price conservation. In fact, inelastic demand for water implies that if demand was changing
only due to higher prices, then the average total bill would by definition need to increase, as the decrease in quantity
consumed would not be large enough to fully offset the price increase. This decrease in total bills suggests that both
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After characterizing the price bounds, we next need to estimate the total conservation achieved
by the two utilities. Rather than compare consumption under surcharge pricing to earlier years,
we take predicted consumption (q̂it) during the drought surcharge period as the appropriate
counterfactual, as these predictions adjust for contemporaneous weather conditions and best
represent what consumption would have been in the absence of drought-related policies. We ad-
ditionally report average predicted consumption values and average prediction errors (defined
as qit − q̂it) in Table A.6. We predict that, on average, households would have consumed 13.73
CCF per month in Coastal and 30.49 CCF per month in Inland in the drought surcharge period
had no drought policies been implemented. Average prediction errors, which reveal how far off
actual consumption was from our predictions, are −2.5 CCF for Coastal and −9.3 for Inland.
Dividing these prediction errors by the predicted consumption yields our estimates of total con-
servation for each utility: an 18.5% reduction in consumption for Coastal and a 30.5% reduction
in consumption for Inland.16

We bring together our demand coefficients, price change bounds, and estimates of total
conservation together in Table 3 to demonstrate demand responses directly attributable to the
drought surcharges themselves. In each column, we present simulated changes in demand im-
plied by our demand regressions by multiplying the relevant β̂ estimates by the corresponding
price change bounds and scaling by predicted consumption. Our results show that in Coastal,
assuming average price responsiveness implies that drought surcharges induced a 5.8–6.0% re-
duction in consumption. Assuming marginal price responsiveness, drought surcharges induced
a 5.5–14.8% reduction in demand. The analogous demand reductions for Inland are 0.8–6.0%
under average price responsiveness and 0.4–5.8% under marginal price responsiveness. We also
translate these demand reductions to their equivalent unit reductions (in 1000 CCF) in Table 3.

There are two primary takeaways from these results. First, under most model specifications
the bounds estimated are fairly tight and imply that drought surcharges alone likely accounted
for one-third or less of the total conservation we observe across the two utilities.17 The fact
that drought surcharges cannot explain most of the realized conservation gains is important to
consider when designing future policy responses to curb water demand during times of drought.
Our results suggest that non-price conservation policies play a relatively larger role in managing
demand compared to drought surcharges, at least in the context of the BBRs considered here.

Second, we also note a differential response to drought surcharges across the two utilities.
While households in both utilities have a similar demand response to drought surcharges, the

utilities, but particularly Inland, had significant non-price conservation at play.
16While the statewide goal was to achieve a 25% reduction in urban water consumption relative to 2013, the State

Water Resources Board assigned utilities differing conservation targets according to their prior baseline consumption
levels in terms of GPCD from summer 2014. These targets ranged from 4% to 36% for the highest-consuming utilities.
Under this regulation, Coastal was assigned a 20% reduction target, and Inland was assigned a 32% reduction target.
Our results imply that both utilities were close to achieving these targets, though our methodology differs from
California’s method of determining compliance.

17This result is implied by dividing the price conservation (%) point estimate by the total conservation (%) estimate
for each specification. These estimates are in the ballpark of those reported in Browne et al. (2021), who attribute
40–44% of the total demand reduction observed in Fresno to price changes.
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Table 3: Simulated Effect of Drought Surcharge Pricing on Demand

Coastal
AP ÂP MP M̂P

Price Conservation (%) -5.8 -6.0 -5.5 -14.8
[-6.7,-4.9] [-6.9,-5.1] [-6.3,-4.7] [-16.9,-12.7]

Price Conservation (1000 CCF) -383.0 -395.7 -363.5 -974.2
[-442.7,-323.3] [-457.4,-334.0] [-414.9,-312.1] [-1111.9,-836.5]

(1) Demand Coefficient -6.49 -6.49 -1.83 -1.83
(2) Price Increase 0.12 0.13 0.41 1.11
(3) Mean Pred. CCF, Cons. Pricing 13.73 13.73 13.73 13.73
(4) Mean Pred. Error, Cons. Pricing -2.53 -2.53 -2.53 -2.53
(5) Total Conservation (%) -18.45 -18.45 -18.45 -18.45
(6) Total Conservation (1000 CCF) -1216.79 -1216.79 -1216.79 -1216.79

Inland
AP ÂP MP M̂P

Price Conservation (%) -0.8 -6.0 -0.4 -5.8
[-1.3,-0.2] [-10.2,-1.7] [-0.7,-0.1] [-9.8,-1.8]

Price Conservation (1000 CCF) -47.5 -371.9 -26.4 -359.4
[-81.2,-13.9] [-635.1,-108.7] [-44.8,-8.1] [-609.3,-109.4]

(1) Demand Coefficient -5.57 -5.57 -1.58 -1.58
(2) Price Increase 0.04 0.33 0.08 1.11
(3) Mean Pred. CCF, Cons. Pricing 30.49 30.49 30.49 30.49
(4) Mean Pred. Error, Cons. Pricing -9.30 -9.30 -9.30 -9.30
(5) Total Conservation (%) -30.49 -30.49 -30.49 -30.49
(6) Total Conservation (1000 CCF) -1894.79 -1894.79 -1894.79 -1894.79

Notes: The table presents estimates of water conservation directly attributable to drought surcharges in both per-
centage change (%) terms and in 1000 CCF. These estimates are constructed as nonlinear combinations of demand
coefficients and prediction errors from our demand models in Table 2. 95% confidence intervals are presented below
point estimates in brackets. Relevant parameters underlying point estimates are presented below point estimates
for each utility. Demand coefficients are sourced from Table 2. Price increases are sourced from Table A.6. For
back-of-the-envelope verification, multiplying (1) × (2)

(3) yields the price conservation point estimate in %. Dividing
(4) by (3) yields (5), the total conservation estimate in %. Dividing the price conservation % point estimate by (5)
and multiplying by (6) yields the price conservation point estimate in 1000 CCF.

aggregate effect is relatively smaller in Inland. This is partly due to a much larger non-price
demand response: total conservation was much larger in Inland in both absolute and percentage
terms. However, the nature of BBRs also affected the efficacy of drought surcharges. Surcharge
pricing only increased prices for households consuming above their allocated budget. Since
Inland households on average have larger lot sizes and therefore larger budgets, they are less
likely to consume above their budget and actually face higher drought surcharge prices. House-
holds engaging in non-price conservation are even less likely to consume above their budget.
This is seen in the small price changes that households actually observed. In Inland, average
and marginal prices only increased by $0.04 and $0.08 respectively, and average bills actually
decreased during the drought surcharge period.

To further illustrate the point that price signals are potentially dampened under BBRs, in Table
4, we present a series of descriptive regressions in which we assess the differential conservation
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responses of heterogenous user classes under drought surcharge pricing. We begin by defining
user classes based on average pre-drought surcharge pricing period consumption, budgets, irri-
gable area, and property values. We define two categories for each: whether a household was
above or below the median in the pre-period. The primary outcome of interest is a dummy vari-
able for whether a household reduced their consumption relative to budget between the training
period of 2011-2013 and the drought surcharge period. The regressor of interest is a dummy for
whether a household was in the above median category based on pre-period characteristics. As
a result, the coefficients can be interpreted as a change in the probability of exhibiting conserva-
tion associated with being a “large” consumption/budget/irrigable area or high property value
household.

Table 4: Probability of Exhibiting Conservation by User Classes

Consumption Budget Irrigable Area Property Value

(1) (2) (3) (4) (5) (6) (7) (8)
Coastal Inland Coastal Inland Coastal Inland Coastal Inland

1[Above Median] 0.08∗∗∗ 0.12∗∗∗ -0.02∗∗∗ -0.15∗∗∗ -0.04∗∗∗ -0.08∗∗∗ -0.02∗∗∗ -0.02∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Observations 27,006 10,841 27,006 10,841 27,006 10,841 27,006 10,841
P(Conserve|Below Median) 0.60 0.67 0.65 0.81 0.65 0.77 0.65 0.74
P(Conserve|Above Median) 0.68 0.78 0.63 0.64 0.63 0.67 0.63 0.71

Notes: The table presents a series of household-level regressions that estimate the proportion of households that reduced
consumption relative to budget relative to the training period of 2011-2013. The dependent variable is a dummy for whether
a household’s average consumption relative to budget was lower under drought surcharge pricing. The primary regressor of
interest is a dummy variable for whether the household was above the median level for two different user classes: consumption
and water budgets. These classes are defined on pre-drought surcharge pricing data. All specifications include a vector of
weather covariates including evapotranspiration, precipitation, temperature, and their squares. Robust standard errors are
presented below coefficient estimates in parentheses. ***: p-val < 0.01; **: p-val < 0.05; *: p-val < 0.1.

The results in Table 4 are stark. In Columns (1)-(2), the probability of conserving associated
with being a large user rises by 8% in Coastal and by 12% in Inland. This suggests that drought
surcharges achieved some success at inducing conservation by heavy users, with the caveat that
these regressions do not separately identify price and non-price conservation. However, Columns
(3)-(8) tell a more nuanced story. Being a large-budget household reduces the probability of
conserving by 2% in Coastal and 15% in Inland. Similarly, having a large lawn also reduces
the probability of conservation, by 4% in Coastal and 8% in Inland. Finally, in both utilities
being an above median property value household reduces the probability of conservation by
2%. These results suggest that households with smaller lawns and smaller water budgets bear
disproportionate shares of the conservation observed. The household-specific nature of BBRs
shields some heavier users from facing higher prices, as budgets increase with irrigable square
area. As a result, the conservation signal sent by drought surcharges is weakened.

These two results have important lessons for how utilities use drought surcharges moving
forward. If the goal is to use drought surcharges on their own to send an appropriate price
signal reflecting water’s relative scarcity, those price changes must bind for a significant portion
of households or the scarcity signal will be weakened. However, when surcharges are paired with
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a suite of other non-price conservation policies, as they were in both Coastal and Inland during
this time period, non-price conservation efforts may play a more important role in managing
demand, with drought surcharges targeting only those households whose demand has been
impervious to prior non-price conservation efforts.

6 Distributional Analysis

We now turn our focus towards the distributional implications of the drought surcharges layered
within BBRs that we observe here. When faced with the state-mandated cuts, many utilities chose
to implement price increases, whether through surcharges, conservation pricing, or fines (as in
Pratt (2023) and Browne et al. (2023)). This is likely to become more common since surcharge
pricing does not require the same regulatory scrutiny as general rate setting since it pays for
temporary demand-side management efforts during droughts. Our demand estimates reveal
that, in the aggregate, households responded to temporary drought surcharges largely in the way
that they would have responded to permanent changes in rate structure. Inelastic demand for an
essential good (residential water) with no perfect substitutes implies that households are likely
to bear a substantial portion of the burden of price increases. This naturally raises the question:
to what extent were these price increases shared equitably across households?

6.1 Characterizing the Incidence of Water Expenditures

A first-order concern is understanding how observed water expenditures are shared across the
income distribution. We begin with the simple exercise of calculating observed average monthly
expenditures as a percentage of a household’s monthly income across income groups.18 The
results, presented in Figure A.7, show that the rates we observe, like most utility expenditures, are
regressive: lower-income households devote a larger share of their income to water expenditures
under the existing rates, both before and after the introduction of surcharge pricing. The overall
regressive nature of the rates observed here is not specific to BBRs. It is well-understood that
water rates in general are a regressive means of raising revenues as opposed to other mechanisms
such as income or property taxes that more directly target wealth (Cardoso and Wichman, 2022).

The addition of drought surcharges on top of BBRs adds an additional layer of complexity
to understanding distributional effects. Although surcharges are designed with conservation as
the primary goal (as opposed to equity), surcharges could reduce the regressivity of BBRs if
high-income, high-use households face price increases. However, it is difficult to draw any such
conclusions about changes in regressivity of surcharges from Figure A.7 because of the presence
of non-price conservation that occurs between the pre-surcharge pricing period and the period

18We do not directly observe household income in our data. To estimate household income, we implement an
approach that combines property value data with Census data on average household incomes in each block group.
Our procedure ranks households within each block group by their observed property value and then assigns each
household an estimated income based on the observed income distribution reported in the Census data for that block
group. We describe this procedure fully in Appendix D.
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in which surcharges were implemented. To assess whether drought surcharges improve the re-
distributive properties of BBRs, we leverage our counterfactual predictions during the drought
surcharge pricing period from the demand analysis, q̂it. We calculate water bills using q̂it un-
der the BBRs with surcharges, as well as using prices from before the introduction of surcharge
pricing. Using q̂it to calculate counterfactual bills is useful because the predictions represent a
baseline level of consumption for each household that is unaffected by the full suite of drought
policies in place during the surcharge pricing period. This allows us to isloate changes in expen-
ditures that result from the introduction of drought surcharges.

We illustrate the distribution of predicted expenditures both before and during surcharge
pricing by constructing a series of Lorenz curves and Gini coefficients similar to Levinson and
Silva (2022). Under the standard approach to constructing Lorenz curves, one plots the share of
income held by each percentile of households, ordered by income. Lorenz curves further away
from the 45-degree diagonal indicate higher levels of income equality (i.e. the poorest 50% of
households may only hold 20% of aggregate income). Gini coefficients on a scale of 0 to 1 can
then be calculated to indicate the relative level of income inequality. We first plot the share of
predicted water bills paid by each percentile of households ordered by income, both before and
during surcharge pricing. Plotting expenditures instead of income implies that a lower-hanging
Lorenz curve signals more inequality in water expenditures across the income distribution. We
additionally construct standard income-based Lorenz curves and Gini coefficients for compari-
son. By comparing the two sets of curves, we can assess the relative progressivity of the rate
structures we observe. If the share of water expenditures is more equal than the share of income
across the income distribution (i.e., the water expenditure Lorenz curve is closer to the 45-degree
line than the income Lorenz curve), then water bills are regressive since lower income households
pay a higher share of water expenditure relative to their share of income.

Figure 4 illustrates our water expenditure Lorenz curves under drought surcharges for each
utility. The predicted water expenditure Lorenz curves under surcharge pricing fall slightly
below the diagonal in each utility, signaling that lower-income households do bear a proportion-
ally lower share of total water expenditures. The Gini coefficients associated with these Lorenz
curves are 0.11 and 0.07 for Coastal and Inland, respectively. Figure 4 also displays the expendi-
ture Lorenz curves that are calculated under pre-drought surcharge pricing, or standard BBRs.
The Gini coefficients associated with these Lorenz curves are 0.08 and 0.07 for Coastal and In-
land, respectively. In both utilities, the expenditure Lorenz curves lie nearly on top of each other,
with surcharges inducing some limited increases in progressivity in Coastal.19 We compare these
results to the standard income Lorenz curves which are also plotted on Figure 4 with the blue
solid line. The income Lorenz curves fall further below the diagonal than the expenditure Lorenz
curves, with associated Gini coefficients of 0.32 for each utility.20

19Note that these Gini coefficients are not directly comparable to the “electric" Ginis reported in Levinson and Silva
(2022), as we calculate Ginis based on the income distribution rather than the consumption distribution. This allows
us to focus on how surcharges potentially redistribute income between relatively richer and poorer households.

20Estimated Gini coefficients for the entire U.S. are on the order of 0.4-0.42. This indicates that estimated incomes
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Figure 4: Distribution of Water Expenditures and Household Income

Notes: The figure presents Lorenz curves indicating the share of predicted water expenditures under surcharge pricing (dashed
light blue line), the share of predicted water expenditures under pre-surcharge pricing (dashed navy line), and share of household
income (solid blue line) that accrue to each percentile of the household distribution ordered by income. The time period included
is the drought surcharge period (July 2015 - December 2016). The 45◦ diagonal is plotted in the dotted black line and represents
perfect equality (i.e., the bottom x% of households pay x% of water expenditures).
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Two key takeaways emerge. First, the regressivity documented in Figure A.7 is further con-
firmed by the Lorenz curves in Figure 4. This regressivity is implied by the fact that the share
of total water expenditures faced by lower income households is higher than the share of total
wealth held at each point along the income distribution. For example, in Coastal the bottom 50%
of households in terms of income hold only 25% of aggregate income, but cover 42% of total
water expenditures. In Inland, the poorest 50% of households also hold only 26% of aggregate
income but pay 45% of total water expenditures. For water rates to be progressive, rates would
need to be more unequal than the income distribution. Overall, the rates observed here do not
lead households to pay for water in proportion to their wealth. While water utilities generally
want to have progressive rate structures, their ultimate equity objectives are often not made ex-
plicit. Without knowing a utility’s underlying objective function, it is difficult to say whether
BBRs are achieving their equity objectives.

Second, the drought surcharges themselves do not appear to increase progressivity relative
to the prices charged before the introduction of surcharges, as evidenced by the similarity of
the Gini coefficients and expenditure Lorenz curves under both sets of prices. While surcharges
are not designed with equity as the primary goal, significant income shifts could occur if richer,
higher-use households face binding price increases. We observe little to no change in progressiv-
ity due to surcharges, despite using predicted consumption that captures pre-drought baseline
consumption and does not allow for households to engage in price- or non-price conservation
in response to changing conditions. This result implies that, even under optimistic assumptions,
surcharges should not be expected to be much more progressive than prevailing water rates, as
they do not appear to bind for enough, or the right type of, households.21

Finally, we unpack the distributional effects of drought surcharges by documenting how wa-
ter expenditures are distributed across heterogeneous user groups, in particular the largest users
that surcharges are intended to target. In Table 5 we calculate shares of total expenditures and
consumption that are borne by those who go above their water budgets on average, and those in
the top quartile of the budget and irrigable area distributions, all defined using the pre-drought
surcharge pricing period. We find that the share of total revenues and consumption by these
large user groups remains largely unchanged between the pre-drought surcharge pricing period
and under surcharge pricing. The fact that shares of consumption remain largely the same across
periods shows that BBRs failed to induce these large use/budget/lawn households to reduce
consumption at proportionally higher rates than small use/budget/lawn households. These re-
sults along with the Lorenz curve analyses indicate that the observed BBRs failed to induce large
changes in income redistribution, and that lower-consumption and lower-income households
bore just as much, if not more of the burden of drought surcharges as larger-consumption and

in our two utilities are slightly more equal than in the country as a whole. Source: https://fred.stlouisfed.org/
series/SIPOVGINIUSA. Last accessed: May 20, 2024.

21Another explanation is that the correlation between income and water consumption is too weak for any rate
structure to be meaningfully progressive. The correlation coefficient between consumption and household income is
0.31 in Coastal and 0.24 in Inland.
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Table 5: Shares of Total Revenue and Consumption Borne by Large Users

Pre-Surcharge Pricing Surcharge Pricing Difference
Coastal

Over-Budget Households
Share Total Revenue 0.38 0.38 -0.01
Share Total CCF 0.30 0.29 -0.02

Heavy-Use Households
Share Total Revenue 0.51 0.51 -0.00
Share Total CCF 0.45 0.44 -0.01

Large-Lawn Households
Share Total Revenue 0.39 0.40 0.01
Share Total CCF 0.39 0.39 0.00

Inland
Over-Budget Households
Share Total Revenue 0.50 0.47 -0.03
Share Total CCF 0.46 0.44 -0.02

Heavy-Use Households
Share Total Revenue 0.47 0.46 -0.01
Share Total CCF 0.46 0.44 -0.02

Large-Lawn Households
Share Total Revenue 0.35 0.36 0.01
Share Total CCF 0.37 0.37 0.01

Notes: The table presents the shares of total revenue and total consumption that are generated
by three separate user classes. Over-budget households are those that go over their budget on
average across all months in the pre-drought surcharge pricing training period of 2011-2013.
Heavy-use and large-lawn households are those in the top quartile of the distribution for these
variables during the same pre-period, respectively. The third column presents differences in
proportions between the two periods. We define total revenue as aggregate revenues raised
from variable commodity charges specifically, and leave out fixed service fees in these calcula-
tions.

higher-income households. These results are consistent with others found in the literature, in-
cluding Yoo et al. (2014) who find that lower-income and lower-consumption households users
are more responsive to prices.22 These results are also consistent with our demand analysis in
that the assignment of household-specific water budgets shields some heavier users from facing
the surcharges by allowing them to consume more water at lower marginal prices. Ultimately,
drought surcharges must bind if they are to induce disproportionate consumption reductions by
the largest users.

22Wichman et al. (2016) also find that low-income households are more sensitive to price increases, but they find
that large users are more responsive to non-price conservation policies. El-Khattabi et al. (2021), however, find that
high-users are more responsive to price, and price elasticities do not vary across the income distribution. So, the
existing evidence is mixed.
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6.2 Counterfactual Rate Analysis

While the analysis so far illustrates the equity properties of drought surcharges under BBRs, we
next seek to answer: how do the rates we observe here perform along equity dimensions relative
to feasible alternatives? To facilitate this analysis, we construct counterfactual rate structures for
comparison with the bills households face under the existing BBRs, focusing on the surcharge
pricing period. We again leverage q̂it, our measure of predicted consumption, to calculate bills
under the various alternatives. As with the Lorenz curve analysis, using the predictions to
calculate counterfactual bills is useful because they represent a baseline level of consumption
for each household that is unaffected by concurrent drought policies. This allows us to focus
on changes in bills due to variation in the alternative rate structures themselves, and not due to
other non-price conservation. So as to facilitate direct comparisons between the rate structures
we assume revenue-neutrality where the aggregate variable commodity charge revenues raised
by the utility must remain constant across rate structures.

In particular, we construct counterfactual bills under three alternative rate structures: a uni-
form rate, a uniform rate coupled with a variable fixed fee tied to household income (Burger et
al., 2020; Borenstein et al., 2021), and an IBR designed to mimic the tiers of the existing BBRs.
Appendix D contains a full description of how we generate counterfactual bills under each of
these alternative rate structures. We define bills here as the sum of commodity charges for water
and the fixed service changes, and abstract away from other fees like sewer charges.

In Figure 5, we illustrate how each of the three alternative rate structures works in theory.
Under uniform rates, households pay both a flat fixed fee and marginal price that are constant
across all units of consumption. In the second panel, we graph rates against income to illustrate
how pairing the uniform rate with a progressive fixed charge operates. As before, the marginal
price is constant and therefore does not vary with income. The progressive fixed fee, however,
does rise with income. We illustrate this rise in Figure 5 as a series of discrete tiers, but in theory
utilities could design such a fee in a number of ways, including as a continuous measure. We
return to depicting consumption on the horizontal axis in the third panel depicting a hypothetical
IBR. As before, the fixed fee does not vary with consumption, but the marginal price increases in
discrete tiers as users move into higher consumption tiers. Recall that these tiers are defined for
all households and are not individualized as under BBRs.

We construct our counterfactual bills using predicted consumption combined with our revenue-
neutrality assumption. Table A.7 presents average bills for each rate structure, broken out by the
quintiles of the property value distribution. Average bills are higher in Inland due to higher con-
sumption overall. Bills monotonically increase along the property value distribution under all
rate structures for both utilities, indicating that consumption is correlated with property values.
Average bills tend to be higher for IBRs in the highest property value quintiles. When consider-
ing the range of average bills, the progressive fixed fee and the IBR provide the largest spread
between the lowest and highest property value quintiles in both utilities. For the progressive
service charge, this result indicates that such a charge is successful in its goal of increasing the
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Figure 5: Counterfactual Rate Structures

Notes: The figure conceptually illustrates the three counterfactual rate structures we construct: a uniform rate, the same uniform
rate combined with a “progressive” fixed fee tied to income, and an increasing block rate. In each panel, marginal prices are graphed
on the left vertical axis, while fixed fees are graphed on the right vertical axis. The horizontal axis is consumption in CCF for the
uniform rate and increasing block rate, and household income for the uniform rate + progressive fixed fee.
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Figure 6: Total Revenue Changes by Property Value Quintiles

Notes: The figure presents changes in total revenues raised from each quintile of the property value distribution when moving from
BBRs to each of three alternative rate structures, respectively. Negative values indicate that less revenue is raised from that quintile
of homes under the alternative structure compared to a BBR, while positive values indicate that more revenue is raised from that
quintile relative to BBRs.

progressivity of water expenditures. For IBRs, this result indicates that high-consuming users in
more valuable homes face higher marginal prices on more units of consumption than they did
under BBRs.

Focusing on average bills alone can mask important heterogeneity in how each rate structure
redistributes revenue. In Figure 6, we calculate the percentage change in total bill revenues
raised from each quintile of the property value distribution as a result of switching from BBRs to
each of three alternatives. Figure 6 shows that in Coastal a uniform rate would shift the burden
towards less wealthy households, but in Inland the uniform rate performs quite similarly to the
existing BBRs. redistributing income through the fixed fee appears to be quite effective in these
simulations, as evidenced by the fact that significantly lower revenues are raised from the bottom
two property value quintiles in both utilities. In both utilities, the IBR structure shifts much of
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the burden of revenue-raising onto households in the highest property value quintile.23

6.3 Discussion

Our distributional analysis raises several points about the equity properties of the nonlinear rates
we analyze here. First, BBRs appear more progressive than uniform rates only in certain settings.
If a utility does not care about addressing equity through the rate structure directly, then it might
be preferable to price water using uniform rates, which avoid complexities with nonlinear rates
that are difficult to communicate to households (Kahn and Wolak, 2013; Brent and Ward, 2019;
Shaffer, 2020). Such rates also require much less information to be collected by the utility about
household size, lot size, and other factors that go into calculating water budgets. However, BBRs
do have one distinct equity advantage over uniform rates in that lower-consumption tiers can
be subsidized using local tax revenues and other fees. Both utilities we study here subsidize
consumption in the first two tiers by using revenues from property taxes to lower marginal
prices below the cost of supplying water in those tiers. Using property tax revenues driven by
wealthier homes to lower water costs for the entire service area improves the progressivity of
BBRs relative to uniform rates. That said, subsidizing volumetric rates for water use is known
to generate allocative inefficiencies by setting incorrect incentives for consumption, particularly
when lump-sum transfers can be used to redistribute costs (Levinson and Silva, 2022).

If a utility does seek to incorporate equity concerns into the rate structure, redistributing
income through the fixed service charge can result in a relatively more progressive distribution
of bills with far lower information costs for the utility. By combining a single marginal price
that reflects the cost of supply with an income-varying service charge, such rates embed attrac-
tive efficiency and equity properties (Burger et al., 2020; Levinson and Silva, 2022). However,
political constraints may make individualized service charges directly tied to income difficult to
implement in practice, as evidenced by California’s current efforts to implement such charges for
electricity.24 If such rates are politically infeasible, IBRs present another option to utilities. Our
results suggest IBRs can achieve progressivity gains relative to BBRs, and utilities could poten-
tially also subsidize consumption in the lower tiers with property taxes in the same way that they

23We enforce revenue-neutrality on these counterfactual rate structures in order to facilitate direct comparisons such
as those made in Figure 6. However, this implicitly assumes that households are not able to adjust their consumption
in response to changing prices when shifting from the BBR to alternative rates. Figure A.8 presents the same rev-
enue changes by property value quintiles under an alternative scenario where we assume that households can shift
consumption one time in response to changing prices, with a price elasticity of demand equal to -0.5. This allows
for the more realistic scenario of consumption responding to prices, with the tradeoff that all scenarios now are not
revenue-neutral. The results are largely similar to those in Figure 6. One change is that IBRs do not hit the highest
property-value quintiles as hard. These high-use households are able to adjust consumption downwards in response
to facing higher prices sooner than they do under BBRs.

24The California Public Utilities Commission is currently moving forward with efforts to imple-
ment an income-based fixed fee for electricity consumption, first proposed by Borenstein et al.
(2021) and subsequently mandated by law in 2022. These efforts have generated significant po-
litical backlash and face potential repeal efforts. Sources: https://www.utilitydive.com/news/
california-lawmakers-backpedal-on-income-based-utility-charges-as-ious-oth/707859/. & https://
energyathaas.wordpress.com/2024/05/13/reality-checking-californias-income-graduated-fixed-charge/.
Last accessed: May 15, 2024.
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currently do with BBRs.
As mentioned previously, Proposition 218 presents another legal constraint on the ability

of utilities to incorporate equity concerns into the rate-making process. The restrictions that
Proposition 218 places on water utilities may make it exceedingly difficult to experiment with
alternative rate structures once an approved rate structure has been set in place. Considering this
constraint, in Appendix D we discuss a final set of counterfactual results (presented in Figure
A.9 and Figure A.10) in which we assume that the utilities are restricted to keeping their BBRs
intact. We then consider how tweaks to the BBR formula can induce changes in progressivity,
and show that combining individualized indoor budgets with an average outdoor budget may
further improve equity properties of BBRs.

Equity considerations by utilities are also different under drought than under times of relative
abundance. When entering into an extended drought period, utilities must assess not only how
to induce permanent conservation, but also how to temporarily curb excessive or wasteful uses
of water while maintaining base levels of indoor water use. By assigning each household an indi-
vidualized water budget, BBRs have the ability (unlike the other rate structures considered here)
to transmit individualized information to each household about what consumption the utility
would ultimately consider “wasteful”. Such an approach may be a more effective option to curb
excess water demand than other options such as enforcement of mandatory water rationing.25

Considering the sum of the evidence, the combination of drought surcharges with nonlinear
BBRs possesses both positive and negative equity properties. Our analysis has noted several
issues with BBRs, most notably that by tying prices to a budget, higher prices are less likely
to bind for higher users with higher budgets, counteracting the purported conservation signal
the utilities are intending to send. Because household income is positively correlated with the
inputs to the budget formula, BBRs embed an implicit transfer from low-income households to
high-income households. At the same time, the use of local property taxes to subsidize lower
consumption tiers works to reverse this effect by embedding transfers from high-income to low-
income households, with the net effect of these competing transfers ambiguous. Ultimately,
whether the water budgets themselves effectively transmit information about scarcity and serve
as a non-price conservation tool is a key question that we are unable to address directly, as we
lack sufficient pre-BBR data from both utilities studied here.26 Knowledge of the efficacy of
the budgets themselves (along with knowledge of the utility’s ultimate objective function when
setting rates) is needed to definitively claim that BBRs are useful tools to achieve conservation
and equity goals.

25One of the utilities in this study enforced mandatory rationing days during an earlier California drought in 2008-
2009. Internal data showed no significant overall conservation due to a rebound effect where water use increased on
non-rationing days, and the utility faced widespread customer backlash.

26Coastal used an IBR structure before switching to BBRs, while Inland previously used a uniform rate. Pérez-
Urdiales and Baerenklau (2019) provide early evidence that budgets can serve as an effective information signal to
high users when switching from uniform rates.
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7 Conclusion

In this paper, we study the introduction of drought surcharges layered within nonlinear BBRs
as a tool for urban water demand management. Our demand analysis indicates a largely price-
inelastic response to the temporary increases in marginal and inframarginal prices. Further
investigation shows that these surcharges alone cannot explain the majority of the conservation
we observe. While utilities often seek to combine price and non-price conservation approaches,
for drought surcharges to sufficiently signal scarcity they must bind for a significant portion
of households. BBRs undercut their effectiveness by shielding high-users with large lots and
lawns from ever facing higher prices. Our comparison of hypothetical rate structures suggests
that BBRs do not clearly dominate other rate structures along equity dimensions, although we
ultimately cannot definitively conclude that BBRs are welfare-dominated.

Climate change will continue to exacerbate water scarcity moving forward, making the need
to effectively conserve water during droughts increasingly important. Our results stress the need
for policymakers to consider the role that non-price policies play in inducing conservation, as
surcharges alone are not enough to explain the demand response observed in the data. Whether
the budgets themselves effectively serve as a non-price conservation tool is an under-studied
question that future research should address. When turning to price-based policies, it is vital
that they send an appropriate price signal that accurately reflects the scarcity value of water.
Assigning high marginal prices, but then allocating large quantities of cheap water to households
with large lawns through water budgets muddies this price signal and undercuts the effectiveness
of surcharge pricing. Ultimately, utilities concerned with balancing conservation and equity
concerns during drought should consider carefully how surcharges interact with existing policies
like water budgets before adoption.
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A Additional Results

A.1 Additional Figures

Summer/Fall 2011: Data 
begin; California enters 

drought

January 2014: 
Drought state 
of emergency 

declared

April 2015: Governor Brown 
orders mandatory statewide 

water reductions

July 2015: Both 
utilities 

implement 
drought 

surcharges under 
WSCP

January – April 2017: 
Heavy precipitation 

and evidence of 
conservation leads to 

end of drought state of 
emergency

Figure A.1: Timeline of 2011-2017 California Drought

Notes: The figure presents a visual timeline of the important events surrounding the California drought of 2011-2017 and how they
relate to the billing data used in the analysis.
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Figure A.2: Predicted and Actual Consumption Over Time, Diagnostic Predictions

Notes: The figure presents the time series of average actual and predicted consumption in each month-of-sample for each utility
separately, with actual consumption represented by the blue solid line and predicted consumption represented by the navy dashed
line. Monthly averages are plotted for the diagnostic exercise in which we use 2012 data only to predict entirely out-of-sample in
2013.

A.2



0
3

6
9

12

0 5 10 15 20
Tree Depth

0
3

6
9

12
0 10 20 30 40

Number of Variables

0
3

6
9

12

0 2 4 6 8 10
Leaf Size

OOB Error
Out-of-Sample RMSE

(a) Coastal

0
4

8
12

16
20

0 5 10 15 20
Tree Depth

0
4

8
12

16
20

0 10 20 30 40
Number of Variables

0
4

8
12

16
20

0 2 4 6 8 10
Leaf Size

OOB Error
Out-of-Sample RMSE

(b) Inland

Figure A.3: Random Forest Parameter Tuning

Notes: The figure presents results from our parameter tuning exercise in which we re-estimate predictions and errors over a range
of discrete values. We repeat this exercise for three random forest tuning parameters, separately for each utility: tree depth, number
of candidate predictor variables made available to the random forest algorithm, and minimum leaf size. Light blue solid lines plot
OOB error rates, and dashed navy lines plot out-of-sample RMSE values over the range of parameter values considered. The values
we choose for use in our generation of our full set of predictions are represented by the black vertical lines in each panel.
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Figure A.4: Random Forest Variable Importance Plots

Notes: The figure presents standard random forest variable importance plots for each utility separately. The top 12 most influential
predictors are presented on a re-scaled measure [0, 1], with 1 being the most influential and 0 being the least influential.
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Figure A.5: Predicted and Actual Consumption Over Time, Panel Fixed Effect Predictions

Notes: The figure presents the time series of average actual and predicted consumption in each month-of-sample for each utility
separately. The predictions here are generated using a panel fixed effects specification with weather covariates and household-by-
month-of-sample fixed effects. The training period data used to estimate the model up to December 2013 is unshaded. The period
in which the drought emergency had been declared but drought surcharges were not yet in effect is shaded in pink (January 2014 to
June 2015). The period in which drought surcharges were in effect is shaded in red (July 2015 - February 2017). Actual consumption
falling below predicted consumption indicates water conservation in the aggregate.
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Figure A.6: Distribution of Usage Relative to Budget

Notes: The figure presents histograms that illustrate the distribution of usage relative to a household’s water budget for household-
months during the drought surcharge period. Dashed vertical lines show the relevant break points for the BBR tier thresholds.
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Figure A.7: Average Monthly Water Expenditures as Share of Income

Notes: The figure plots the percentage of monthly income that households allocate to water expenditures over discrete household
income groups, calculated by taking average monthly bills and dividing by monthly income. This procedure is repeated separately
for both Coastal and Inland, and separately during pre-surcharge pricing (2011-2013) and the drought surcharge pricing period (July
2015 - December 2016).
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Figure A.8: Total Revenue Changes by Price-Responsiveness Assumption

Notes: The figure presents changes in total revenues raised from each quintile of the property value distribution when moving from
BBRs to each of three alternative rate structures, respectively. Negative values indicate that less revenue is raised from that quintile
of homes under the alternative structure compared to a BBR, while positive values indicate that more revenue is raised from that
quintile relative to BBRs. The figure differs from Figure 6 in that we allow for a one-time adjustment of quantity in response to price
changes, with a price-elasticity of demand equal to -0.5.
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Figure A.9: Distribution of “Adjusted” Household Sizes

Notes: The figure presents histograms of the actual household sizes reported in the billing microdata, as well as the “adjusted”
distribution of household sizes after implementing our household size correction procedure with census data. The reported or
actual household size distribution is represented by the solid bars, and the adjusted household size values are represented with the
transparent outlined bars.
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Figure A.10: Concentration Curves for Counterfactual Expenditure Shares

Notes: The figure presents Lorenz-style concentration curves indicating the share of water expenditures that accrue to each percentile
of the household distribution ordered by consumption, separately for actual BBRs as well as the two counterfactual BBRs we develop.
The time period included is the drought surcharge pricing period (July 2015 - December 2016). The 45◦ diagonal is plotted in the
dotted black line and represents perfect equality (i.e., the bottom x% of households pay x% of water expenditures).
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A.2 Additional Tables

Table A.1: Validation Checks for Diagnostic Predictions

Coastal Mean
Out-of-Bag Error 4.44
Out-of-Sample RMSE, RF 6.61
Out-of-Sample RMSE, OLS 7.31

Inland Mean
Out-of-Bag Error 10.79
Out-of-Sample RMSE, RF 15.05
Out-of-Sample RMSE, OLS 17.61

Notes: The table presents errors for the diagnostic predictions using 2012-2013 data.
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Table A.2: IV Demand Regressions, No Bootstrapping

Coastal Inland

(1) (2) (3) (4)
AP MP AP MP

Average Price -6.49∗∗∗ -5.57∗∗∗

(0.39) (1.36)

Marginal Price -1.83∗∗∗ -1.58∗∗∗

(0.10) (0.38)
ε -1.03∗∗∗ -0.45∗∗∗ -0.61∗∗∗ -0.22∗∗∗

(0.06) (0.02) (0.15) (0.05)
Observations 477,326 480,394 203,259 203,773
Households 26,995 27,006 10,840 10,841
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 1,070 1,349 608 975

Notes: The table presents estimates of β̂ from estimating Equation 3.
The dependent variable is the difference between contemporaneous and
baseline consumption, ∆qit. Endogenous prices are instrumented for in
the first-stage using ∆ p̂it. The time period included is from July 2015 to
December 2016. Columns 1 and 3 instrument for average price, while
Columns 2 and 4 instrument for marginal price. All specifications in-
clude a vector of weather covariates including evapotranspiration, pre-
cipitation, temperature, and their squares. Standard errors are clustered
at the household level and are presented below coefficient estimates in
parentheses. *** (p-val <.01); ** (p-val <.05); * (p-val<.1).
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Table A.3: IV Demand Regressions, Alternative Fixed Effects

Coastal Inland

(1) (2) (3) (4)
AP MP AP MP

Average Price -5.44∗∗∗ -10.96∗∗∗

(0.37) (1.67)

Marginal Price -1.53∗∗∗ -3.14∗∗∗

(0.10) (0.45)
ε -0.87∗∗∗ -0.37∗∗∗ -1.19∗∗∗ -0.43∗∗∗

(0.06) (0.02) (0.18) (0.06)
Observations 477,326 480,394 203,259 203,773
Households 26,995 27,006 10,840 10,841
Household FE Y Y Y Y
Month-of-Sample x Zip Code FE Y Y Y Y
First-stage F-stat 1,024 1,301 468 733

Notes: The table presents estimates of β̂ from estimating Equation 3. The dependent
variable is the difference between contemporaneous and baseline consumption, ∆qit.
Endogenous prices are instrumented for in the first-stage using ∆ p̂it. The time period
included is from July 2015 to December 2016. Columns 1 and 3 instrument for average
price, while Columns 2 and 4 instrument for marginal price. All specifications include
a vector of weather covariates including evapotranspiration, precipitation, tempera-
ture, and their squares. Standard errors are clustered at the household level and are
presented below coefficient estimates in parantheses. *** (p-val <.01); ** (p-val <.05); *
(p-val<.1).
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Table A.4: IV Demand Regressions, Lagged Model

Coastal Inland

(1) (2) (3) (4)
AP MP AP MP

L.Average Price -11.53∗∗∗ -9.42∗∗∗

(0.83) (2.35)

L.Marginal Price -2.92∗∗∗ -2.86∗∗∗

(0.18) (0.69)
ε -1.84∗∗∗ -0.71∗∗∗ -1.02∗∗∗ -0.39∗∗∗

(0.13) (0.05) (0.26) (0.09)
Observations 474,460 477,414 201,267 201,703
Households 26,996 27,006 10,840 10,841
Household FE Y Y Y Y
Month-of-Sample Y Y Y Y
First-stage F-stat 400 577 217 301

Notes: The table presents estimates of β̂ from estimating a variant of
Equation 3. The dependent variable is the difference between con-
temporaneous and baseline consumption, ∆qit. Endogenous prices
lagged one billing period are instrumented for in the first-stage us-
ing ∆ p̂it. The time period included is from July 2015 to December
2016. Columns 1 and 3 instrument for average price, while Columns
2 and 4 instrument for marginal price. All specifications include a
vector of weather covariates including evapotranspiration, precipita-
tion, temperature, and their squares. Standard errors are clustered at
the household level and are presented below coefficient estimates in
parantheses. *** (p-val <.01); ** (p-val <.05); * (p-val<.1).
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Table A.5: IV Demand Regressions, Log-Log Model

Coastal Inland

(1) (2) (3) (4)
AP MP AP MP

ln(AP) -0.29∗∗∗ -1.75∗∗∗

(0.04) (0.19)

ln(MP) -0.14∗∗∗ -0.66∗∗∗

(0.02) (0.07)
Observations 477,110 477,110 203,187 203,187
Households 26,988 26,988 10,840 10,840
Household FE Y Y Y Y
Month-of-Sample FE Y Y Y Y
First-stage F-stat 1,334 1,411 612 916

Notes: The table presents estimates of β̂ from estimating a variant
of Equation 3. The dependent variable is the difference between
logged contemporaneous and logged baseline consumption, ln(∆qit) =
ln(qit)− ln(q̃it). Logged endogenous prices are instrumented for in the
first-stage using ∆ p̂it. The time period included is from July 2015 to
December 2016. Columns 1 and 3 instrument for average price, while
Columns 2 and 4 instrument for marginal price. All specifications in-
clude a vector of weather covariates including evapotranspiration, pre-
cipitation, temperature, and their squares. Standard errors are clustered
at the household level and are presented below coefficient estimates in
parantheses. *** (p-val <.01); ** (p-val <.05); * (p-val<.1).
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Table A.6: Prices Before and During Drought Surcharges

Coastal
AP ÂP MP M̂P Bill

1[Drought Surcharge Period] 0.12∗∗∗ 0.13∗∗∗ 0.41∗∗∗ 1.11∗∗∗ -0.42∗∗∗

(0.00) (0.00) (0.01) (0.01) (0.11)
Observations 1,282,874 1,289,270 1,289,270 1,289,270 1,289,270

Inland
AP ÂP MP M̂P Bill

1[Drought Surcharge Period] 0.04∗∗∗ 0.33∗∗∗ 0.08∗∗∗ 1.11∗∗∗ -8.32∗∗∗

(0.00) (0.00) (0.01) (0.01) (0.32)
Observations 480,161 481,416 481,416 481,416 481,416

Notes: The table presents results from a series of regressions that capture changes in prices between
the drought surcharge period and the pre-drought surcharge period. Column titles represent the
price variable used as the dependent variable in each specification. The primary regressor of interest
is a dummy variable for the observation occurring during the drought surcharge period. The time
period includes the pre-drought surcharge pricing period of 2011-2013 and the drought surcharge
pricing period of July 2015 - December 2016, while omitting January 2014 - June 2015. All speci-
fications include household and month-of-year fixed effects. Standard errors are presented below
coefficient estimates and are clustered at the household level.
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Table A.7: Summary Statistics for Counterfactual Rates

(1) (2) (3) (4) (5)
Coastal Mean Mean Mean Mean Mean
Budget-Based Rate 28.04 29.38 31.67 36.44 53.50
Uniform Rate 30.34 31.66 33.58 37.16 46.22
Progressive Fixed Fee 23.16 28.24 33.77 41.11 52.79
IBR, Mean Budget 26.22 27.06 30.47 36.20 59.14
Unique Accounts 5,402 5,402 5,400 5,401 5,401
Total Billing Observations 96,800 96,205 96,005 95,949 95,435

(1) (2) (3) (4) (5)
Inland Mean Mean Mean Mean Mean
Budget-Based Rate 88.20 97.53 100.67 110.56 141.38
Uniform Rate 91.43 98.57 100.96 109.31 138.09
Progressive Fixed Fee 71.12 89.48 100.27 119.71 157.72
IBR, Mean Budget 86.51 94.28 96.66 107.54 153.31
Unique Accounts 2,169 2,168 2,168 2,169 2,167
Total Billing Observations 40,743 40,798 40,666 40,751 40,866

Notes: The table presents summary statistics for the counterfactual bill analysis. Con-
sumption is defined as predicted consumption in the drought surcharge period using
the predictions from our random forests. Mean bills in USD ($) under each rate struc-
ture are presented for each rate structure and are broken out by quintiles of the property
value distribution. Bills are defined as the variable commodity charge plus the service
charge, and abstract away from other charges like sewer fees and other delivery charges
that may be assessed by each utility.
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B Data Construction and Cleaning Appendix

B.1 Raw Data Cleaning

We first import the raw data files and keep only observations in the Single-Family Residential
category and in the periods during which BBRs were in place for the two utilities (July 2011 -
August 2017 for Coastal and October 2011 - December 2017 for Inland). The raw billing records
for Coastal contain 3,836,406 billing record observations. The Inland billing records contain
2,097,552 billing record observations. For Coastal, condos are sometimes listed as single family
and sometimes as multi-family. We chose to keep both initially but then filter out buildings that
are clearly master-metered apartment buildings and not apartment buildings through the use of
a more descriptive property use code identifier. We then filter further by dropping accounts that
use recycled water instead of standard drinking water. After these initial screens, we are left with
2,121,852 observations for Coastal and 1,025,381 observations for Inland.

We then merge each of three supplemental datasets as described in Section 3. We first merge
in the U.S. Census 2015 ACS five-year estimates for household size, household race, and house-
hold income distributions at the census block group level (U.S. Census Bureau, 2015). The raw
billing records were geocoded to include latitude and longitude coordinates as well as block and
block group numbers which faciliitate the merge to census data. We also merge some limited
demographic information received from CaDC by using customer and billing record id numbers.

Next, we merge the county assessor data from the two southern California counties in which
our utilities are located. For Coastal, the assessor parcel number matches well with the assessor
parcel number in the assessor data (over 99% match rate). We then drop addresses that match to
more than one assessor parcel number and keep the one most likely to be the actual household
(as determine by similarities in address strings). We calculate the Levenshtein difference between
strings for these parcels and keep those with low scores as well as those in which street numbers
of the houses match between the raw data and assessor. For Inland, the assessor parcel number
did not match well with the assessor data, in part due to some data issues with extra digits at
the end of numbers. String cleaning and manipulation was never able to generate higher than a
70% match rate. Even for those records that did match, in many cases hand-inspected addresses
were different between the raw data and the assessor data. Therefore, for Inland we created a full
address string variable by which to merge the assessor data to the billing data. This resulted in a
80% match rate. We then drop a limited number of households with more than 1 parcel number
for a given address. At this stage in the data cleaning, we are left with 2,017,749 observations for
Coastal and 886,529 observations for Inland.

Further, we merge in our weather variables in addition to evapotranspiration as described in
the paper and from Schlenker and Roberts (2009). The data consist of daily weather measures
for 2.5-by-2.5 mile grids across the contiguous 48 states. We keep records for relevant grids in
southern California over the study period of our analysis (2011 - 2017). We then match customers
in the billing data to their nearest grid in the daily weather data using the ‘geonear’ Stata pack-
age (Picard, 2012). After this, we then take each billing record and calculate the average daily
maximum and minimum temperature as well as average and total precipitation based on the
daily weather data for the corresponding weather grid and dates for the billing record. A small
number of parcels in both data sets had missing coordinates and are dropped in this stage.

We apply four final filtering criteria to our data. We first drop a small number of remaining
observations that are less than 15 days or more than 45 days, as these observations are not
representative of a normal billing period that approximates a calendar month’s worth of time.
We then drop very large outliers in consumption and budgets. These potentially indicate months
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where the customers had a variance to fill a swimming pool, or potentially had a leak or other
water emergency on their property. For both variables, we drop observations greater than the
99.75th percentile. Third, we apply the filtering criteria that households must have a relatively full
panel (≥ 70 months) worth of billing records in order to guarantee that enough data is available to
generate consumption predicitons. Finally, we also drop a small number of households for which
there is no variability in water consumption across all months, as these are potentially households
with no water consumption. After applying these filters, we are left with the final data used in the
empirical analysis: 1,989,521 observations for Coastal (representing 27,006 unique households)
and 789,741 observations for Inland (representing 10,841 unique households).

B.2 Evapotranspiration and Outdoor Budget Construction in Inland

Beginning in 2016, many Inland records have missing information on indoor and outdoor wa-
ter budgets. We can exactly recreate indoor budgets using the indoor budget formula, but we
must rely on an estimate of the outdoor water budget. This is because we only observe aggregate
evapotranspiration over the entire billing period, but Inland calculates outdoor budgets on a daily
level and then aggregates them to get a total outdoor budget for the billing period. However,
Inland’s plant factors correspond to calendar months and most billing periods include days from
two separate months. Therefore, from the raw data alone we cannot exactly re-create outdoor
water budgets because we are unsure of how much evapotranspiration occurred in each calen-
dar month of a billing period. To improve upon using the overall evapotranspiration measure,
we use publicly-available data from the California Irrigation Management Information System
(CIMIS, 2018) to calculate an estimate of the percentage of evapotranspiration that occurred in
each month of the billing period. We then apply those percentages to the total evapotranspira-
tion observed for the billing record, and generate two new variables for each billing record that
represent the portion of the overall evapotranspiration that occurred in each calendar month of
the billing record. Then, we are able to apply the correct daily plant factors to these adjusted
evapotranspiration variables, and more accurately recreate outdoor water budgets.

B.3 Price and Bill Calculations

We gather historical information about residential water rates and budget tiers from both utilities’
financial records and other publicly available documents in order to merge price information with
our billing records. We formally code the rate structure for each budget period using the Open
Water Rate System (OWRS) developed by the California Data Collaborative. We calculate final
bill amounts using the R package ’RateParser’ developed by Tull (2016). This package allows
users to bring in data on monthly water budgets and consumption and apply the rate structures
coded in OWRS format to easily calculate total monthly bills. While the Coastal billing records
did not include the final bill amount, we repeat this process for Inland despite having final
bill amounts to help us ensure the accuracy of our calculations. This also indirectly helped us
to confirm that our estimates of outdoor budgets discussed previously were accurate as our
calculated bills were very close to the provided bill amounts. Our analysis here accounts for the
fact that Coastal rounds budgets to the nearest integer, while Inland does not.
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C Empirical Framework Appendix

C.1 Prediction Generation

The first step in our empirical analysis is the development of predictions that reflect what counter-
factual consumption would have been in the absence of price and non-price conservation policies
(described in Section 4). We use random forests, a machine learning algorithm commonly used
in predictive exercises, to generate these predictions (Breiman, 2001). We use the rforest Stata
package from Schonlau and Zou (2020) to implement our predictive exercise.

Our predictions use data from 2011-2013 to predict consumption in 2014-2017. An underlying
assumption that we make is that random forests have the ability to predict reliably well in entirely
out-of-sample years. While we expect our predictions to not match the observed consumption
in 2014-2017 (due to the presence of drought policies), we do want the predictions in 2014-
2017 to reliably capture the baseline consumption from 2011-2013. We test this assumption by
performing a diagnostic exercise to check the ability of random forests to predict entirely out-of-
sample. The core of the exercise is to limit the data to just two years, 2012-2013, and use 2012
data to predict 2013 consumption entirely out-of-sample. Since the full suite of drought policies
had not been enacted, 2012 data should be able to predict out-of-sample in 2013 well. Results
from this exercise are presented in Figure A.2. On average, the out-of-sample predictions in 2013
are close to the levels of actual consumption in 2013, and no consistent gap emerges between the
two.

We additionally use the 2012-2013 prediction diagnostic exercises to perform other standard
random forest model checks. In Table A.1, we present out-of-bag (OOB) error rates as well the
out-of-sample root mean square error (RMSE) values for our diagnostic predictions compared
to an alternative in which we use simple OLS models to generate predictions. OOB error rates
are calculated by constructing random forest predictions for each observation in the training set
using only the trees in which that observation was not included in the bootstrap sample used
to develop that tree. OOB error rates are conceptually similar to errors calculated using k-fold
cross validation in other machine learning applications such as the least absolute shrinkage and
selection operator (LASSO). As expected, out-of-sample RMSE values are higher than the OOB
errors for our random forest predictions. However, Table A.1 does illustrate that the random
forest does buy us additional predictive accuracy over using simple OLS for predictions, as
evidenced by the lower out-of-sample RMSE for random forests in each utility compared to OLS.

We conclude our diagnostic exercise by using the 2012-2013 data to tune a number of impor-
tant parameters for our random forests. For each utility separately, we allow tree depth, number
of predictor variables made available to the random forest, and minimum leaf size to vary over
a range of reasonable values, estimate predictions, OOB errors and out-of-sample RMSE values,
and select appropriate values to use for these parameters when estimating the primary predic-
tions using the full data. We seek to minimize these errors while at the same time respecting
computational constraints. For example, there is a clear tradeoff between allowing trees to grow
and deeper for more predictive accuracy, and the amount of computational time it would take
to estimate those deeper trees. Figure A.3 graphs OOB errors and out-of-sample RMSE values
over the range of values considered for each of the three tuning parameters separately (and also
separately by utility). The value we choose for each is represented by the vertical black lines, and
represents our judgment of the value beyond which the benefits of additional improvements in
predictive accuracy are outweighed by the cost of additional computing time. We choose final
values for the tuning parameters as follows: 16 for tree depth, 15 for number of predictor vari-
ables, and 3 for minimum leaf size in Coastal; for Inland, we choose 18 for tree depth, 24 for
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number of predictor variables, and 3 for minimum leaf size.
Given these chosen values of the tuning parameters, we proceed to generate our out-of-

sample predictions using the full study period, with 2011 - 2013 as the training period and 2014 -
2017 as the out-of-sample test period. We examine which variables contribute the most influence
to shaping the predictions by inspecting standard variable importance plots that calculate each
variable’s contribution to predictive accuracy and present a variable-importance metric on the
scale [0, 1] (with 1 being most influential). The results of this exercise are presented in Figure A.4,
where the top 12 most influential predictors are presented for each utility separately. Outdoor
and total water budgets are influential in both utiliities, as they send a normative signals to
household about how much water consumption is “appropriate.” Other influential predictors
include weather variables and month and zip code dummies, especially in Inland.

Finally, we ensure that our results are not the result of some idiosyncratic feature unique to
random forests by generating an alternative set of out-of-sample counterfactual predictions for
2014-2017 using a simple panel fixed effects approach. We include a vector of weather covariates
and interactions and household-by-month-of-year fixed effects to generate these predictions. The
time series of average monthly values is presented in Figure A.5. These predictions also reliably
capture household consumption on average in the training period and replicate the observed gap
between predicted and actual consumption that we observe when using random forests.

C.2 Bootstrapping Procedure

Our initial approach of clustering standard errors at the household level does not account for the
fact that our random forest predictions are estimated with error. Without correcting for this, it is
likely that our clustered standard errors will be too small. To the best of our knowledge, there is
not fully clear guidance from the econometrics literature on how to handle this issue, and that
in practice it is common to bootstrap both the prediction and regression steps of the estimation
procedure to fully account for the variance associated with our predictions (for example, the pro-
cedure described in Burlig et al. (2020).) To construct standard errors for β̂ that properly account
for errors associated with our predictions, we implement the following bootstrap procedure:

• Sample households with replacement up to the full number of households in each utility.
Sampling a household means that all their data across years is included in the sample.

• Train the random forest using the 2011-2013 data from the bootstrap sample, and predict
q̂b

it out-of-sample in 2014-2017 for the bootstrap sample.

• Construct the predicted price change instrument ∆ p̂b
it in the same way as before using q̂b

it.

• Estimate Equation 3 on the bootstrap sample (weighting by number of times household
was sampled) and save values of β̂b

• Repeat the process B times. We set B=500 to balance having enough bootstrap replications
to capture the important variability while respecting computational constraints.

• Calculate the mean and variance of the B estimates of β̂, and report the bootstrapped
standard error as the square root of the estimated variance.
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D Distributional Appendix

D.1 Construction of Household Income Variable

We do not directly observe a measure of income for the households in our study. We create an
estimated measure of household income to use in the construction of our water Lorenz curves
presented in Section 6. To estimate income, we use the following method, incorporating both
information property values from our assessor data, as well as annual household incomes from
the ACS Census 2015 5-year estimates at the block group level (U.S. Census Bureau, 2015).

ACS provides estimates of the number of households in discrete income ranges at the block
group level. We combine these estimates with data on the total households in the block group
to create proportions of homes in each income category. For reference, the annual income cat-
egories are as follows: Less than $10,000; $10,000 - $14,999; $15,000–$19,999; $20,000–$24,999;
$25,000–$29,999; $30,000–$34,999; $35,000–$39,999; $40,000–$44,999; $45,000–$49,999; $50,000–
$59,999; $60,000–$74,999; $75,000–$99,999; $100,000–$124,999; $125,000–$149,999; $150,000–$199,999;
and More than $200,000. To illustrate the calculation we make, consider a relatively wealthy block
group that is estimated to have 200 homes overall, of which 40 homes each belong to the top five
income brackets. Therefore, the proportion of homes in each income range is 0 for the lower
income brackets, and 0.2 for each of the top five income brackets.

We proceed by ranking the households in each block group for both utilities by that house-
hold’s observed property value. We then take the proportions calculated previously and apply
them to our household rankings. Now, consider the same hypothetical block group from before.
We apply the percentages calculated from the ACS data to the households in this block group
that are in our data. In this example, this would results in no households being assigned to
the lower income groups, and 20% of the households in our data being assigned to each of the
top five income groups. We conclude by assigning each household the midpoint of the discrete
income range it was assigned to. Functionally, this means that each household is assigned one of
the following annual income values: $5,000; $12,500; $17,500; $22,500; $27,500; $32,500; $37,500;
$42,500; $47,500; $55,000; $67,500; $87,500; $112,500; $137,500; $175,000; and $200,000.

Our procedure depends on two primary assumptions. The first assumption that the house-
holds in our data are representative of the block group as a whole, and that the income distribu-
tion illustrated by the ACS data accurately describes the income distribution of the households
in our data. The second primary assumption is that property values, which we do observe in our
assessor data, are correlated with income and can be used to compare households in our data,
such that a household with a higher property value also has a higher income. This is a strong
assumption but one we make given data limitations.

D.2 Construction of Alternative Rate Structures

We construct counterfactual bills under three alternative rate structures: a uniform rate where
the marginal price paid for each unit of water is constant, the same uniform rate coupled with
a fixed service charge that varies with household income, and an IBR designed to mimic the
budget tiers observed in practice. We discuss the construction of each set of alternatives in turn.

The uniform rate is the simplest of the three alternative rate structures. We begin by aggre-
gating total volumetric revenue and total consumption in the drought surcharge pricing period.
Recall that these aggregate measures are based on predicted consumption. We then divide total
predicted revenue by total predicted consumption to calculate the single uniform rate that satis-
fies our assumption of revenue neutrality. For Coastal, this uniform marginal price is $1.79/CCF.

D.1



For Inland, the uniform marginal price is $2.55. These prices for both utilities fall between the
Tier 2 and Tier 3 prices under the existing BBRs.

Next, we combine the uniform rate derived in the previous structure with a “progressive”
fixed service charge, similar to the analysis in Burger et al. (2020). To construct a fee that varies
with income, we start with our estimated household income measure defined for the Lorenz
curve analysis and aggregate income utility-wide. This allows us to determine each household’s
share of total utility-wide income. We then aggregate total revenues from the existing fixed
service charges. We conclude by multiplying each household’s share of total income by the
aggregate service charge revenue to determine each household’s “progressive” service charge.
The service charges we calculate range from $0.49 to $19.62 in Coastal, with a mean of $11.22.
For Inland, the service charges range from $1.45 to $58.06, with a mean of $29.90.

We conclude by constructing a revenue-neutral IBR structure. We construct the IBR tiers by
taking the average indoor and outdoor water budgets for each utility under drought surcharges
and use those as the block cutoff points between Tier 1 and 2 consumption, and Tier 2 and 3
consumption, respectively. We further mimic the BBRs we observe in practice by setting 125% of
the total budget as the cutoff between Tier 3 and 4 consumption, and 150% of the total budget as
the cutoff between Tier 4 and 5 consumption. The functional difference between this alternative
rate structure and the existing BBRs is that rates are defined utility-wide and are no longer
household-specific. We then distribute predicted consumption to each of the new IBR blocks.

We then determine a schedule of prices consistent with our revenue-neutrality assumption.
Since there are infinitely many combinations of prices that result in the same overall volumetric
revenue, we solve a system of linear equations that includes the total revenue equation (price
times quantity within each block) as well as a series of equations that maintain the ratio of prices
in higher blocks to the prices in Tier 1 of the actual BBR structure. This set-up results in a
unique solution that preserves the nature of an IBR structure as well as the ratio of prices in the
original BBR structure. The price schedule we calculate for our alternative IBR is as follows for
Coastal: $1.01 for Tier 1 consumption, $1.15 for Tier 2 consumption, and $6.29 for consumption
in Tiers 3 - 5. Recall that we are mimicking drought surcharge pricing, which is why the price
for all consumption above budget is constant. For Inland, the IBR price schedule is $1.96 for
Tier 1 consumption, $2.29 for Tier 2 consumption, $4.38 for Tier 3 consumption, and $5.37 for
consumption in Tiers 4 and 5. Note that we obtain four unique prices instead of three as with
Coastal because Inland restored the Tier 3 price one year into drought surcharges. The breakpoint
between our five consumption tiers are 10, 16, 20, and 24 CCF in Coastal, and 10, 36, 45, and 54
CCF for Inland.

D.3 Counterfactual BBR Structures

Proposition 218 in California limits the extent to which local governments can assess new taxes
and fees. Utilities considering changes to their rate structures must take care to not run afoul
of Proposition 218 restrictions. Given this, it might be infeasible to assume that our two utilities
could change to a different type of rate structure as we do in our counterfactual bill analysis in
Section 6. A natural question arises from these restrictions: if other rate designs are infeasible
and utilities are set on using BBRs, how can changes to the water budget formula itself affect its
redistributive properties? We consider here two feasible changes to the water budget calculations.

First, we examine the assumptions that utilities make about household size for homes in their
service territories. As referenced earlier, both utilities make an initial assumption about single
family household sizes (3 or 4 in Coastal and 3 in Inland) that households can later update. Given
that household size is a direct component of indoor budgets, this policy incentivize households
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with more than the assumed number of persons to update their household size with the utility
and receive a larger budget. We verify this trend in the data in Figure A.9, as households do
not update their household size to be smaller than the default. The solid bars represent the
distribution of household sizes reported in the data, and show no households with one or two
people. This points to a potential issue, as it is unlikely that this distribution of household sizes
used in calculating water budgets will closely match the actual distribution of household sizes in
each utility’s service territory.

We use Census data on household sizes in our study areas to create an adjusted measure
of household size. To do so, we sort households first by number of bedrooms then by irrigable
square footage within census block groups. We assume that households that have updated their
household size with the utility are “correct”, and only include households that are assigned the
default household size in this correction. Then, in a similar process used in our estimation of
household income, we assign each ranked household an adjusted or “corrected” household size
according to the distribution of household sizes in each block group. For example, if ACS says
that 10% of homes in a block group are 1 person homes, we will assign the bottom 10% of our
households in our ranking a household size of 1 instead of the default household size. Figure
A.9 also plots this adjusted distribution in the transparent bars, showing the gap between what
the observed data and what the census data imply about household sizes.

This is our first counterfactual BBR: we keep all other factors the same, but just calculate
budgets using this adjusted household size. Our second counterfactual BBR focuses on another
large driver of variation in water budgets: irrigable square footage of a household’s lawn. Our
analysis has shown that this portion of water budgets allows households with large lawns to
consume more water at lower marginal prices. To correct for this, we suspend the individualized
outdoor budget, and instead calculate all household outdoor budgets based on the utility-wide
average irrigable square footage area. We combine these new outdoor budgets with our adjusted
indoor budgets from the previous counterfactual to define a household’s new budget. In both
of our counterfactual BBRs, we introduce a further simplification in that we collapse our budget
down to 2 tiers, with an under-budget and over-budget price.

Figure A.10 displays Lorenz-style concentration curves where we plot the share of bills paid
under actual BBRs as well as our two counterfactual BBRs over the distribution of households
ordered by consumption. When plotting expenditures, the lower-hanging a curve is, the more
redistributive in nature it is. Our results show that only correcting the household size actually
makes BBRs slightly less redistributive relative to the observed rates, indicating that the liberal
household size assumptions are relatively more beneficial to lower consumption, smaller homes.
Assigning all households a single average outdoor budget significantly improves the redistribu-
tive nature of BBRs relative to both alternatives, as many large households with large budgets
have their outdoor budgets reduced as a result of the policy change.
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