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1 Introduction

Applied econometricians often transform variables to make the interpretation

of empirical results easier, to approximate a normal distribution, to reduce

heteroskedasticity, or to reduce the effect of outliers. Taking the logarithm

of a variable has long been a popular such transformation.

One problem with taking the logarithm of a variable is that it does not

allow retaining zero-valued observations because ln(0) is undefined. But eco-

nomic data often include meaningful zero-valued observations, and applied

econometricians are typically loath to drop those observations for which the

logarithm is undefined. Consequently, researchers have often resorted to ad

hoc means of accounting for this when taking the natural logarithm of a vari-

able, such as adding 1 to the variable prior to its transformation (MaCurdy

and Pencavel, 1986).

In recent years, the inverse hyperbolic sine (or arcsinh) transformation has

grown in popularity among applied econometricians because (i) it is similar

to a logarithm, and (ii) it allows retaining zero-valued (and even negative-

valued) observations (Burbidge et al., 1988; MacKinnon and Magee, 1990;

Pence, 2006).1

For a random variable x, taking the inverse hyperbolic sine transformation

1As Ravallion (forthcoming) notes, in cases where a concave log-like transformation
of negative data is necessary, the inverse hyperbolic sine transformation has undesirable
properties, viz. it is convex over negative values. Given that, and because the inverse
hyperbolic sine transformation is largely used with nonnegative variables (e.g., earnings),
we focus in this paper only on cases where the variable to which the inverse hyperbolic
sine transformation is applied is nonnegative.
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yields a new variable x̃, such that

x̃ = arcsinh(x) = ln
(
x+
√
x2 + 1

)
. (1)

The arcsinh transformation is easy to implement, yet there is no formal

guidance on how to compute elasticities when using it, or on how it compares

to alternative transformations.2 In this article, we first fill this gap. We

then provide an empirical illustration that relies on a widely known and

publicly available data set. We conclude by offering guidelines for applied

work, including Stata code to estimate the elasticities we derive in this paper.

2 Deriving Elasticities

In applied work, four common cases might present themselves to the ap-

plied econometrician, with each of the following pairs representing a de-

pendent variable–explanatory variable combination: (1) linear–arcsinh, (2)

arcsinh–linear, (3) arcsinh–linear with a dummy independent variable, and

(4) arcsinh–arcsinh specifications. We derive elasticities analytically for each

case. A useful preliminary result for what follows is that ∂x̃
∂x

= 1√
x2+1

.

2For examples of the arcsinh transformation in practice, see Bahar and Rapoport
(2018), Clemens and Tiongson (2017), Jayachandran et al. (2017), McKenzie (2017), or
Muehlenbachs et al. (2017).
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2.1 Linear–arcsinh Specification

Consider the following estimable equation

y = α + βx̃+ ε. (2)

In this case, computing ξ̂yx = ∂̂y
∂x
· x
y

after estimating the previous equation is

relatively straightforward, since ∂̂y
∂x

= β̂√
x2+1

, and so

ξ̂yx =
β̂

y

x√
x2 + 1

. (3)

Because limx→∞
x√
x2+1

= 1, for large values of x, ξ̂yx ≈ β̂
y
.3

2.2 arcsinh–Linear Specification

Now, consider an estimable equation of the form

ỹ = α + βx+ ε (4)

where x is a continuous variable. In this case, to recover y from the left-hand

side of the equation of interest after estimating the previous equation, one

has to apply the hyperbolic sine transformation—that is, the inverse of the

3We discuss what we mean by “large values of x” in sub-section 2.5.
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inverse hyperbolic sine, or sinh—on both sides, so that

ŷ = sinh(α̂ + β̂x+ ε̂). (5)

In this case, to recover ξ̂yx = ∂̂y
∂x
· x
y
, we need to multiply x

y
by ∂̂y

∂x
= β̂ cosh(α̂+

β̂x+ ε̂) to get

ξ̂yx = β̂ cosh(α̂ + β̂x+ ε̂) · x
y
, (6)

which can be rewritten as

ξ̂yx = β̂ cosh(arcsinh(y)) · x
y

= β̂x ·
√
y2 + 1

y
. (7)

In this case, because limy→∞

√
y2+1

y
= 1, for large values of y, ξ̂yx ≈ β̂x.

2.3 arcsinh–Linear Specification with Dummy Inde-

pendent Variables

Dummy variables pose a different set of problems for calculating elasticities,

and this problem is not unique to arcsinh–linear econometric specifications.

Standard log-linear specifications also suffer from this problem (Halvorsen

and Palmquist, 1980; Kennedy, 1981). Consider the estimable equation

ỹ = α + βd+ ε (8)
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where d is a dichotomous variable taking on only values of zero or one.

The quantity ∂ỹ/∂d is undefined because dichotomous variables only change

discretely. Following the arguments of Halvorsen and Palmquist (1980),

Kennedy (1981), and Giles (1982) for semilogarithmic regression equations

with dummy variables, we derive the analogous proportional effect for the

arcsinh transformation, which we denote P̄ .

To derive P̄ , the percentage change in y associated with a change from

d = 0 to d = 1, we first apply the sinh transformation to both sides, such

that

sinh(ỹ) = y = sinh(α + βd+ ε). (9)

After estimating Eq. 8, P̄ is then defined as

ˆ̄P

100
=
ŷ(d = 1)− ŷ(d = 0)

ŷ(d = 0)
=

sinh(α̂ + β̂ + ε̂)− sinh(α̂ + ε̂)

sinh(α̂ + ε̂)

=
sinh(α̂ + β̂ + ε̂)

sinh(α̂ + ε̂)
− 1

(10)

Researchers often adopt the arcsinh transformation to approximate a log-

arithm and interpret coefficients as they would for a logarithmic equation. In

this case, one can approximate semi-elasticities as shown by Halvorsen and

Palmquist (1980), Kennedy (1981), and Giles (1982) by exponentiating both

sides of Eq. 8 and noting that

exp(ỹ) = y +
√
y2 + 1 ≈ 2y for large y.
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The resulting approximation of a percentage change in y due to a dis-

crete change in d is the standard Halvorsen and Palmquist (1980) result for

logarithmic equations,4

ˆ̃P

100
≈ exp(β̂)− 1, (11)

which, when using the small-sample bias correction suggested by Kennedy

(1981), yields
ˆ̃P

100
≈ exp(β̂ − 0.5V̂ar(β̂))− 1, (12)

where V̂ar(β̂) is an estimate of the variance of β̂. For most applications, with

large enough y, using ˆ̃P defined in Eq. 12 would suffice, rather than the exact

interpretation, ˆ̄P . We note, however, that conditioning variables “drop out”

of Eq. 12 due to the properties of natural logarithms, which is a special case.

In general, it is important to include conditioning variables at their sample

means in elasticity formulations with non-logarithmic transformations, such

as in Eq. 8.

2.4 arcsinh–arcsinh Specification

Now, consider a regression of the form,

ỹ = α + βx̃+ ε. (13)

4See Appendix A for a derivation of this result.

8



In this last case, in order to recover y from the left-hand side of the equa-

tion of interest after estimating the previous equation, one has to apply the

hyperbolic sine transformation on both sides, so that

y = sinh(α̂ + β̂x̃+ ε̂). (14)

In this case, ∂̂y
∂x

= β̂ cosh(α̂+β̂arcsinh(x)+ε̂)√
x2+1

, so that

ξ̂yx =
β̂ cosh(α̂ + β̂arcsinh(x) + ε̂)√

x2 + 1
· x
y

. (15)

Because the argument of the cosh function is equal to ỹ, we can rewrite this

last equation as

ξ̂yx =
β̂ cosh(arcsinh(y))√

x2 + 1
· x
y

= β̂ ·
√
y2 + 1

y
· x√

x2 + 1
. (16)

Because limx→∞
x√
x2+1

= 1 and limy→∞

√
y2+1

y
= 1, for large values of x and

y, ξ̂yx ≈ β̂.

2.5 Caveats

In the literature, the elasticities just derived are interpreted as the elasticities

one would obtain from equivalent specifications with logarithmic transforma-

tions, but this only holds for large enough average values of x, y, or both.

This begs the question of how large is large enough. We suggest applied
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econometricians use approximate elasticities for values of x or y no less than

10. Although this value seems arbitrary, we suggest it because values greater

than 10 reduce approximation error to less than half of a percent. Obviously,

greater thresholds will yield greater accuracy.

Indeed, starting from the equation y = α + βx + ε, wherein ξyx = βx
y

,

multiplying y by k > 0 will return a coefficient on x equal to βk, and the

elasticity ξyx will be such that ∂y
∂x
· x
y

= βkx
yk

, so that ξyx = βx
y

. Likewise, mul-

tiplying x by k will change the coefficient but leave the elasticity unaffected.

In this linear–linear case, rescaling y or x does not change the elasticity.

When an arcsinh transformation is involved, however, Monte Carlo sim-

ulations show that ξyx becomes more stable k increases. Specifically, we

have generated a data set containing 1, 000 observations on three variables:

x ∼ N(10, 2), e ∼ N(0, 2), and y, which is such that

ky = 5 + 0.5kx+ e (17)

The results of those simulations are shown for values of k equal to 1, 5, 10,

50, 100, 1,000, and 10,000 respectively for the linear–linear, linear–arcsinh,

arcsinh–linear, and arcsinh–arcsinh cases in Table 1. As k gets larger, the

elasticities rapidly become more stable. For k > 10, there is virtually no

discernable change in the elasticity estimates as k increases.

Lastly, recall that applied econometricians often adopt the arcsinh trans-

formation to deal with variables with zero-valued observations, and the pres-
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ence of such observations at low (i.e., zero) values of x or y may result in

biased elasticity estimates. In these cases, researchers should calculate elas-

ticities using their exact formulations derived in equations 3, 7, and 16. But

because all three elasticities are undefined when y = 0, we suggest the fol-

lowing. Defining ȳ = 1
N

∑N
i=1 yi, one workaround when y = 0 is to multiply

by x̄
ȳ

instead of by x
y
, i.e., to report the elasticity at the means of x and y

instead of one of the mean elasticities we derive above.

3 Empirical illustration

We illustrate common uses of the inverse-hyperbolic sine transformation us-

ing data from Dehejia and Wahba (1999), who evaluated LaLonde’s (1986)

canonical design-replication experiment for the National Supported Work

(NSW) demonstration.

In that experiment, disadvantaged workers were randomly assigned either

to the NSW program, wherein they were given counseling and work experi-

ence, or to the control group, wherein they received neither of those things.

We use the Dehejia and Wahba (1999) subset of LaLonde’s (1986) original

data.

The outcome of interest is post-treatment annual earnings, Earnings78.

Because this application is for illustrative purposes, we focus on estimating

the treatment effect of the NSW program controlling for pre-treatment earn-

ings only. The inverse hyperbolic sine transformation of earnings is poten-
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tially attractive because earnings data tends to be right-skewed and there is a

nontrivial number of true zeros in the data. As shown in Table 1, Earnings78

has 45 and 92 zero-valued observations respectively for the treatment and

control groups, with 111 and 178 zero-valued pre-treatment earnings obser-

vations respectively for the treatment and control groups.

We estimate four simple specifications that capture each of the cases de-

scribed above, as well as two models with the oft-used ln(x+1) transformation

for comparison. Results are presented in Table 2.5

In column (1), we see that the NSW job-training program increased post-

treatment earnings of the treated group by $1,750 per year relative to the

control group. This estimate is illustrative of the estimate in Dehejia and

Wahba (1999) Table 3, panel B, row 1. We calculate a semi-elasticity by

dividing the treatment coefficient by the sample mean of the dependent vari-

able to show that NSW increased earnings of treated individuals by approxi-

mately 33%. We also calculate the earnings elasticity between pre- and post-

treatment earnings, which shows that as pre-treatment earnings increase by

10%, we observe a 4.3% increase in post-treatment earnings. This elasticity

does not have a meaningful economic interpretation, although it is useful for

comparing elasticity calculations.

In column (2), we transform pre-treatment earnings using the arcsinh

5Before interpreting our results, we reiterate that this empirical exercise is intended to
illustrate how ad hoc transformations can lead to changes in elasticity interpretations. We
include several goodness-of-fit statistics for the interested reader, although choosing the
specification that fits best is not the purpose of the illustration.
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transformation. This adjustment reduces the earnings elasticity from 0.043 to

0.026, a nearly 40 percent reduction. This is a drastic change for a seemingly

innocuous transformation of an independent variable, likely due to having

reduced the influence of outliers (e.g., very high earners on average) as a

result of the inverse hyperbolic sine transformation. The coefficient on NSW,

however, remains stable, suggesting that the arcsinh transformation of a

control variable does not affect causal interpretation of treatment variables

and can improve the fit of the model.

In columns (3) and (4), we repeat this analysis for arcsinh transformation

of an independent variable: post-treatment earnings. Here, we see notable

deviations from the linear–arcsinh case. Focusing on the earnings elasticity,

we find a similar pattern as in columns (1) and (2): applying the arcsinh

transformation to post-treatment earnings reduces the elasticity estimate by

a factor of two. These elasticities, overall, are substantially larger than that

of the linear case. This illustration shows that a transformation of the de-

pendent variable can have a drastic effect on elasticity estimates.

We also present in columns (3) and (4) semi-elasticity estimates of NSW

on earnings calculated both by exact methods (P̄ ) and by the logarithmic ap-

proximation (P̃ ). Results suggest that NSW increased earnings by 158–188

percent. These results highlight the danger of interpreting coefficient esti-

mates directly as semi-elasticities for large coefficients on dummy variables

in arcsinh–linear regression equations. In both columns, P̄ is approximately

25 percentage points larger than P̃ . This difference stems almost entirely
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from the small-sample adjustment in P̃ . Because earnings are large in our

application, the difference in P̄ and P̃ before the small-sample adjustment is

trivial, suggesting the simpler logarithmic approximation performs well.

Finally, in columns (5) and (6), we repeat the previous analysis but substi-

tute the ln(x+ 1) transformation for the arcsinh transformation. Our results

for ξ(Earnings78,Earnings75) are largely analogous to the arcsinh case. This

similarity suggests that common transformations of dependent and indepen-

dent variables with a large proportion of zeros and outliers can have substan-

tial implications for elasticity estimates. For semi-elasticities, we find that

transforming dependent variables by logarithms produces percentage changes

about 15–20 percentage points smaller than arcsinh transformations (shown

in columns (3) and (4)) in our application.

We do not take a stand on whether the effect of the NSW program pre-

sented in this sequence of results is the true effect of job-training programs

on earnings; that is not the point of this paper. Rather, we show that under

seemingly innocuous, oft-used transformations of dependent and independent

variables, we can produce wildly different elasticity estimates even within a

randomized design. We view this simple analysis as a cautionary warning

to applied econometricians about using ad hoc transformations to deal with

zero-valued observations and to facilitate easy interpretation of empirical re-

sults.
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4 Summary and Concluding Remarks

We have first derived exact elasticities in cases where an applied econome-

trician applies the increasingly popular inverse hyperbolic sine (or arcsinh)

transformation to a variable, characterizing elasticities for the cases where

the arcsinh transformation is applied to (i) an explanatory variable of in-

terest, (ii) the dependent variable with a continuous explanatory variable of

interest, (iii) the dependent variable with a dichotomous explanatory vari-

able of interest, and (iv) both the dependent variable and the explanatory

variable of interest.

After discussing some of the caveats of our approach, we have derived

those elasticities for a well-known application, which has provided a caution-

ary tale regarding the use of ad hoc transformations of variables when dealing

with zero-valued observations.

We conclude with the following guidelines for applied researchers who

wish to use the inverse hyperbolic sine transformation in their own work to

obtain elasticities:

1. One needs to be careful when interpreting inverse hyperbolic sine co-

efficients as semi-elasticities. In most cases, the researcher will need

to transform those coefficients in the manner derived above prior to

interpreting them as percentage changes. In our empirical example, in-

terpreting β on NSW as a semi-elasticity in an arcsinh–linear equation

understates the correct percentage effect by 40 percent.
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2. Standard logarithmic adjustments for semi-elasticities in arcsinh–linear

equations with dummy variables can be used with little error for de-

pendent variables with untransformed means roughly greater than 10.

3. Applying the inverse hyperbolic sine transformation to an explanatory

variable of interest appears somewhat harmless, but it can change elas-

ticities relative to the linear-linear model substantially.

4. For cases where the applied researcher is dealing with data that contain

too many zero-valued observations, it is probably better to model the

data-generating process explicitly, e.g., using a Tobit or zero-inflated

Poisson or negative binomial model.6 Unfortunately, there is no way

to know what “too many” means in this context and so as a rule of

thumb, we submit that if the data has more than one third zero-valued

observations, it is perhaps best to explicitly model selection out of zero

and into the positive domain.

5. It is easy to obtain a more stable elasticity estimate by multiplying the

variable to which the arcsinh transformation is applied by a constant

k > 1. As k increases, the approximation error of the elasticity esti-

6In developing countries, for example, many agricultural producers do not use chemical
fertilizer, preferring instead to use organic fertilizer. In such cases, it is not uncommon to
have a data set where roughly half of the observations report using no chemical fertilizer,
and those observations are coded as zeros. In such cases, the applied econometrician can
either explicitly model the data-generating process—say, by estimating a type II Tobit
where the first stage looks at whether a producer uses chemical fertilizer and the second
stage looks at how much chemical fertilizer the same producer uses conditional on using
it in the first place.
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mate is reduced. So for example, one can get more stable estimates by

taking the arcsinh of a price in dollars rather than of the same price in

thousands of dollars.

6. As with other elasticity estimates that rely on nonlinear combinations

of coefficients and data, standard errors should be obtained using the

delta method.

7. In Appendix B, we present Stata code that calculates elasticities in the

cases presented in sections 2.1 to 2.4.

Overall, the inverse hyperbolic sine function can be a useful tool for econo-

metricians using variables with extreme values and true zeros. For large

positive values, arcsinh can generally be treated like a natural logarithm.

Future research might consider small-sample adjustments in the elasticity

formulations we have presented here.
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Table 1: Simulation results for arbitrarily scaling dependent and in-
dependent variables by a constant k ≥ 1

Empirical specification

Linear-linear Linear-arcsinh arcsinh-linear arcsinh-arcsinh

Values of k :
1 0.476063 0.433217 0.500552 0.460390
5 0.476063 0.432082 0.501383 0.460081
10 0.476063 0.432046 0.501410 0.460071
50 0.476063 0.432034 0.501419 0.460068
100 0.476063 0.432034 0.501419 0.460068
1000 0.476063 0.432033 0.501419 0.460068
10,000 0.476063 0.432034 0.501419 0.460068

Notes: This table presents elasticity estimates from different empirical specifications based
on a simulated data set where x ∼ N(10, 2), e ∼ N(0, 2), and ky = 5 + 0.5kx+ e for various
values of k.
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Table 2: Summary statistics of Dehejia and
Wahba (1999) NSW data

Treatment Group Control Group

Mean SD Mean SD
Earnings78 6349.1 7867.4 4554.8 5483.8
Earnings75 1532.1 3219.3 1266.9 3103.0
Observations 185 260
Earnings78 = 0 45 92
Earnings75 = 0 111 178

Notes: This table presents summary statistics for the Dehejia
and Wahba (1999) sample of LaLonde’s (1986) original data.
Only earnings data and treatment indicators are used in this
analysis.
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Appendix A

Consider the model
arcsinh(y) = α + βd+ ε (A.1)

To approximate P̄ , the percentage change in ŷ due to a change in the dummy
variable d, we exponentiate both sides of Eq. A.1 after estimation,

exp(arcsinh(ŷ)) = ŷ +
√

(ŷ2 + 1) ≈ 2ŷ = exp(α̂ + β̂x+ ε̂) (A.2)

where the approximation holds for large ŷ.
We then define the percentage change in ŷ due to a discrete change in d,

P̄

100
=
ŷ(d = 1)− ŷ(d = 0)

ŷ(d = 0)

=
1
2

exp(α̂ + β̂x+ ε̂)− 1
2

exp(α̂ + ε̂)
1
2

exp(α̂ + ε̂)
= exp(β̂)− 1.

(A.3)
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Appendix B

This section we presents Stata code to estimate the elasticities discussed in
this paper for the simple case where there are only two variables: the depen-
dent variable y, and the explanatory variable of interest x. Before anything
else, the following preliminary lines of code are necessary:

egen xbar = mean(x)

egen ybar = mean(y)

gen ihs_x = asinh(x)

gen ihs_y = asinh(y)

where xbar and ybar are respectively the means of the explanatory vari-
able of interest and of the dependent variable, ihs_x denotes the inverse
hyperbolic sine transformation x, and ihs_y denotes the inverse hyperbolic
sine transformation y.

Turning to elasticities, recall that for the standard case, the elasticity can
be estimated as follows:

reg y x

nlcom _b[x]*xbar/ybar

Similarly, for the linear-arcsinh case, the elasticity can be estimated as
follows:

reg y ihs_x

nlcom (_b[ihs_x]*xbar)/(ybar*sqrt(xbar^2+1))

Likewise, the elasticity for the arcsinh-linear case can be estimated as
follows:

reg ihs_y x

nlcom _b[x]*xbar*((sqrt(ybar^2+1))/ybar)

Finally, the elasticity for the arcsinh-arcsinh case can be estimated as
follows:

A.2



reg ihs_y ihs_x

nlcom (_b[ihs_x]*xbar*(sqrt(ybar^2+1)))/(ybar*sqrt(xbar^2+1))

In all case, Stata estimates the standard errors using the delta method.
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